QCM d'autoévaluation, exercice 51 page 401

Maths TS obligatoire

énoncé

Dans une usine, une machine fabrique des tiges métalliques. L'ingénieur chargé du réglage affirme que les tiges fabriquées présentent un défaut dans $0.8\,\%$ des cas.

On s'intéresse à un échantillon de 800 tiges prélevées au hasard dans le stock. On suppose que le stock est suffisamment grand pour assimiler cela à un tirage au sort avec remise. On note X le nombre de tiges sans défaut.

X suit une loi binomiale de paramètres :

a)
$$n = 800$$
 et $p = 0.8$

b)
$$n = 640$$
 et $p = 0.008$

c)
$$n = 800$$
 et $p = 0.008$

d)
$$n = 800$$
 et $p = 0.992$

Rappel : loi de Bernouilli

On dit qu'une expérience aléatoire à deux issues est une épreuve de Bernoulli. Par convention, une des deux issues, de probabilité p avec 0 , est appelée succès (notée <math>S) et l'autre est appelée échec (notée \overline{S}).

Rappel : loi de Bernouilli

On dit qu'une expérience aléatoire à deux issues est une épreuve de Bernoulli. Par convention, une des deux issues, de probabilité p avec $0 \le p < 1$, est appelée succès (notée S) et l'autre est appelée échec (notée \overline{S}).

Rappel : Schéma de Bernoulli

On considère une épreuve de Bernoulli dont la probabilité de succès est p. La répétition n fois (où $n \in \mathbb{N}^*$), de façon indépendante, de cette épreuve de Bernoulli est appelée schéma de Bernoulli de paramètres n et p.

Rappel : loi de Bernouilli

On dit qu'une expérience aléatoire à deux issues est une épreuve de Bernoulli. Par convention, une des deux issues, de probabilité p avec $0 \le p < 1$, est appelée succès (notée S) et l'autre est appelée échec (notée \overline{S}).

Rappel : Schéma de Bernoulli

On considère une épreuve de Bernoulli dont la probabilité de succès est p. La répétition n fois (où $n \in \mathbb{N}^*$), de façon indépendante, de cette épreuve de Bernoulli est appelée schéma de Bernoulli de paramètres n et p.

Rappel : loi binomiale

On considère un schéma de Bernoulli de paramètres n et p.

On dit que la variable aléatoire X donnant le nombre de succès obtenus sur les n épreuves suit la loi binomiale de paramètres n et p, notée $\mathcal{B}(n;p)$.

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

Chaque épreuve élémentaire n'a que deux issues possibles :

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

Chaque épreuve élémentaire n'a que deux issues possibles : soit l'épreuve est un succès lorsque la tige est sans défaut de probabilité p=0,992

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

Chaque épreuve élémentaire n'a que deux issues possibles :

soit l'épreuve est un succès lorsque la tige est sans défaut de probabilité p=0,992

soit l'épreuve est un échec lorsque la tige présente un défaut de probabilité 1-p=0,008

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

Chaque épreuve élémentaire n'a que deux issues possibles :

soit l'épreuve est un succès lorsque la tige est sans défaut de probabilité p=0,992

soit l'épreuve est un échec lorsque la tige présente un défaut de probabilité $1-p=0,008\,$

Nous sommes donc en présence d'un schéma de Bernoulli de paramètre n=800 et p=0,992

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

Chaque épreuve élémentaire n'a que deux issues possibles :

soit l'épreuve est un succès lorsque la tige est sans défaut de probabilité p=0,992

soit l'épreuve est un échec lorsque la tige présente un défaut de probabilité 1-p=0,008

Nous sommes donc en présence d'un schéma de Bernoulli de paramètre n=800 et p=0,992

Ainsi, la variable aléatoire X comptant le nombre de succès suit la loi binomiale de paramètres n=800 et p=0,992

L'expérience est constituée de n=800 épreuves élémentaires identiques et indépendantes puisque les tirages sont assimilables à des tirages avec remise.

Chaque épreuve élémentaire n'a que deux issues possibles :

soit l'épreuve est un succès lorsque la tige est sans défaut de probabilité p=0,992

soit l'épreuve est un échec lorsque la tige présente un défaut de probabilité 1-p=0,008

Nous sommes donc en présence d'un schéma de Bernoulli de paramètre n=800 et p=0,992

Ainsi, la variable aléatoire X comptant le nombre de succès suit la loi binomiale de paramètres n=800 et p=0,992

réponse d)

