Exercice 54 page 375

Maths TS obligatoire

énoncé

X suit une loi normale de paramètres $\mu=10$ et $\sigma.$ On sait que $P(X\leqslant 11)=0.8.$

- 1 Quelle loi suit la variable aléatoire $Z=\dfrac{X-10}{\sigma}$?
- Déterminer la valeur de t tel que $P(Z \leqslant t) = 0.8$.
- \blacksquare En déduire la valeur de σ .

1

Rappel

Soit μ et σ deux réels avec $\sigma>0$. On dit qu'une variable aléatoire X suit la loi normale $\mathscr{N}(\mu\ ;\ \sigma^2)$ si $Z=\dfrac{X-\mu}{\sigma}$ suit la loi normale centrée réduite $\mathscr{N}(0\ ;\ 1)$.

$$Z = \frac{X - 10}{\sigma} \text{ suit la loi normale centrée réduite } \mathcal{N}(0 \text{ ; } 1).$$

2 D'après la calculatrice ($\mu = 0$ et $\sigma = 1$ pour Z),

Rappel

Calculatrice TI

Dans le menu **distrib**, on choisit FracNormale (et on écrit FracNormale (0.8,0,1).

Calculatrice Casio

Dans le menu **STAT** > **DIST** > **NORM**, on choisit **InvN** et on complète puis on valide.

 $t \approx 0.842$

3 On a:

$$X \le 11 \Leftrightarrow X - 10 \le 1$$

On a :

$$X \le 11 \Leftrightarrow X - 10 \le 1$$
$$\Leftrightarrow \frac{X - 10}{\sigma} \le \frac{1}{\sigma}$$

3 On a:

$$X \le 11 \Leftrightarrow X - 10 \le 1$$
$$\Leftrightarrow \frac{X - 10}{\sigma} \le \frac{1}{\sigma}$$
$$\Leftrightarrow Z \le \frac{1}{\sigma}$$

3 On a:

$$X \le 11 \Leftrightarrow X - 10 \le 1$$
$$\Leftrightarrow \frac{X - 10}{\sigma} \le \frac{1}{\sigma}$$
$$\Leftrightarrow Z \le \frac{1}{\sigma}$$

Alors,

$$P(X \le 11) = 0.8 \Leftrightarrow P\left(Z \le \frac{1}{\sigma}\right) = 0.8$$

On a :

$$X \le 11 \Leftrightarrow X - 10 \le 1$$
$$\Leftrightarrow \frac{X - 10}{\sigma} \le \frac{1}{\sigma}$$
$$\Leftrightarrow Z \le \frac{1}{\sigma}$$

Alors,

$$P(X \le 11) = 0.8 \Leftrightarrow P\left(Z \le \frac{1}{\sigma}\right) = 0.8$$

Par conséquent, d'après la question précédente,

$$\frac{1}{\sigma} \approx 0.842$$

On a :

$$X \le 11 \Leftrightarrow X - 10 \le 1$$
$$\Leftrightarrow \frac{X - 10}{\sigma} \le \frac{1}{\sigma}$$
$$\Leftrightarrow Z \le \frac{1}{\sigma}$$

Alors,

$$P(X \le 11) = 0.8 \Leftrightarrow P\left(Z \le \frac{1}{\sigma}\right) = 0.8$$

Par conséquent, d'après la question précédente,

$$\frac{1}{\sigma} \approx 0.842$$

et

$$\sigma \approx \frac{1}{0.842} \approx 1{,}188$$

