Exercice 16 page 26

Sésamath

Maths TS obligatoire

énoncé

On considère la suite (u_n) définie par

$$u_0=5$$
 et $u_{n+1}=rac{1}{2}u_n+1$ pour tout $n\in\mathbb{N}.$

Montrer par récurrence que $2 \leqslant u_n \leqslant 5$ pour tout entier $n \geqslant 0$.

Méthode : Démontrer par récurrence une propriété

La démonstration par récurrence est un type de démonstration utilisé pour démontrer qu'une propriété est vraie pour des entiers positifs à partir d'un rang donné n_0 .

Pour démontrer par récurrence qu'une propriété est vraie pour tout entier positif $n \ge n_0$, on procède par étapes :

- On énonce la propriété à démontrer.
- **Initialisation**: on vérifie que la propriété est vraie pour $n = n_0$.
- **Hérédité** : on vérifie que si l'on suppose que la propriété est vraie à un rang $n \ge n_0$ (c'est ce que l'on appelle l'**hypothèse de récurrence**) alors la propriété est vraie au rang n+1 (le rang suivant n).
- **Conclusion**: la propriété est vraie pour $n = n_0$ et elle est héréditaire; donc par récurrence elle est vraie pour tout $n \ge n_0$.

Propriété à démontrer :

Propriété à démontrer :

$$(\mathcal{P}_n)$$
: $2 \leqslant u_n \leqslant 5$ pour tout entier $n \geqslant 0$

Propriété à démontrer :

$$(\mathcal{P}_n)$$
: $2 \leqslant u_n \leqslant 5$ pour tout entier $n \geqslant 0$

Initialisation pour n=0:

Propriété à démontrer :

$$(\mathcal{P}_n): 2 \leqslant u_n \leqslant 5$$
 pour tout entier $n \geqslant 0$

Initialisation pour n = 0:

$$u_0 = 5$$

Propriété à démontrer :

$$(\mathcal{P}_n): 2 \leqslant u_n \leqslant 5$$
 pour tout entier $n \geqslant 0$

Initialisation pour n = 0:

$$u_0 = 5$$

On a donc bien

$$2 \le u_0 \le 5$$

Propriété à démontrer :

$$(\mathcal{P}_n): 2 \leqslant u_n \leqslant 5$$
 pour tout entier $n \geqslant 0$

Initialisation pour n = 0:

$$u_0 = 5$$

On a donc bien

$$2 \le u_0 \le 5$$

La propriété (\mathcal{P}_n) est donc initialisée au rang 0.

Hérédité:

Hérédité: Supposons qu'il existe un entier $k \ge 0$ tel que

$$(\mathcal{P}_k)$$
: $2 \leqslant u_k \leqslant 5$ soit vrai (Hypothèse de récurrence)

et montrons que

$$(\mathcal{P}_{k+1}): 2 \leqslant u_{k+1} \leqslant 5$$

Hérédité: Supposons qu'il existe un entier $k \geq 0$ tel que

$$(\mathcal{P}_k)$$
: $2 \leqslant u_k \leqslant 5$ soit vrai (Hypothèse de récurrence)

et montrons que

$$(\mathcal{P}_{k+1}): 2 \leqslant u_{k+1} \leqslant 5$$

$$2 \leqslant u_k \leqslant 5 \Rightarrow 1 \leqslant \frac{1}{2} u_k \leqslant \frac{5}{2}$$

Hérédité: Supposons qu'il existe un entier $k \ge 0$ tel que

 (\mathcal{P}_k) : $2 \leqslant u_k \leqslant 5$ soit vrai (Hypothèse de récurrence)

et montrons que

$$(\mathcal{P}_{k+1}): 2 \leqslant u_{k+1} \leqslant 5$$

$$2 \leqslant u_k \leqslant 5 \Rightarrow 1 \leqslant \frac{1}{2}u_k \leqslant \frac{5}{2}$$
$$\Rightarrow 2 \leqslant \frac{1}{2}u_k + 1 \leqslant \frac{7}{2}$$

Hérédité: Supposons qu'il existe un entier $k \geq 0$ tel que

 (\mathcal{P}_k) : $2 \leqslant u_k \leqslant 5$ soit vrai (Hypothèse de récurrence)

et montrons que

$$(\mathcal{P}_{k+1}): 2 \leqslant u_{k+1} \leqslant 5$$

$$2 \leqslant u_k \leqslant 5 \Rightarrow 1 \leqslant \frac{1}{2}u_k \leqslant \frac{5}{2}$$
$$\Rightarrow 2 \leqslant \frac{1}{2}u_k + 1 \leqslant \frac{7}{2}$$
$$\Rightarrow 2 \leqslant u_{k+1} \leqslant \frac{7}{2} \le 5$$

Hérédité: Supposons qu'il existe un entier $k \ge 0$ tel que

$$(\mathcal{P}_k)$$
: $2 \leqslant u_k \leqslant 5$ soit vrai (Hypothèse de récurrence)

et montrons que

$$(\mathcal{P}_{k+1}): 2 \leqslant u_{k+1} \leqslant 5$$

est alors vrai.

$$2 \leqslant u_k \leqslant 5 \Rightarrow 1 \leqslant \frac{1}{2}u_k \leqslant \frac{5}{2}$$
$$\Rightarrow 2 \leqslant \frac{1}{2}u_k + 1 \leqslant \frac{7}{2}$$
$$\Rightarrow 2 \leqslant u_{k+1} \leqslant \frac{7}{2} \le 5$$

La propriété (\mathcal{P}_n) est donc héréditaire.

Conclusion:

Conclusion:

La propriété (\mathcal{P}_n) étant initialisée au rang 0 et héréditaire, par récurrence, elle est vraie pour tout entier naturel n, c'est-à-dire $2 \leqslant u_n \leqslant 5$ pour tout entier naturel n.