S'entraîner ex 12 page 25

Maths TS

énoncé

Sans justification, dire dans les différents cas suivants si la suite (u_n) est convergente ou divergente et préciser éventuellement sa limite.

- $u_n = 4(-5)^n$
- $u_n = 3 \frac{2}{\sqrt{n}} + \frac{6}{n} \frac{1}{n\sqrt{n}}$
- $u_n = -(2n+5)^2$
- 4 $u_n = (n+1)(\sqrt{n}+2)$
- $u_n = -\frac{4}{\pi^n \times n^5}$
- $u_n = 7n^2 n + 2$
- $u_n = \frac{n}{n+1}$

Cette suite diverge,

Cette suite diverge, de plus, $(-5)^n = (-1)^n \times 5^n$,

Cette suite diverge, de plus, $(-5)^n = (-1)^n \times 5^n$, or 5^n diverge vers $+\infty$ et $(-1)^n$ prend alternativement les valeurs 1 et -1, cette suite n'admet donc pas de limite.

Cette suite converge vers 3, en effet,

Cette suite converge vers 3, en effet, chacune des fractions a un numérateur fini et un dénominateur qui tend vers $+\infty$,

Cette suite converge vers 3, en effet, chacune des fractions a un numérateur fini et un dénominateur qui tend vers $+\infty$, donc $\lim_{n\to+\infty} u_n = 3$.

Comme la suite $n \mapsto (2n+5)^2$ diverge vers $+\infty$, la suite u_n diverge vers $-\infty$.

Comme
$$n \mapsto n+1$$
 et $n \mapsto \sqrt{n}+2$ divergent vers $+\infty$,

Comme $n \mapsto n+1$ et $n \mapsto \sqrt{n}+2$ divergent vers $+\infty$, par produit, u_n diverge vers $\mapsto +\infty$.

Comme $n \mapsto \pi^n \ (\pi > 1)$ et $n \mapsto n^5$ divergent vers $+\infty$,

Comme $n \mapsto \pi^n$ $(\pi > 1)$ et $n \mapsto n^5$ divergent vers $+\infty$, 5 alors $n \mapsto \pi^n \times n^5$ diverge vers $+\infty$, donc par quotient,

Comme $n \mapsto \pi^n \ (\pi > 1)$ et $n \mapsto n^5$ divergent vers $+\infty$, 5 alors $n \mapsto \pi^n \times n^5$ diverge vers $+\infty$, donc par quotient, u_n converge vers 0.

Cette suite diverge vers $+\infty$, 6

Cette suite diverge vers $+\infty$, en effet, pour $n \neq 0$, $u_n = n^2 \left(7 - \frac{1}{n} + \frac{2}{n^2}\right)$,

Cette suite diverge vers $+\infty$, en effet, pour $n \neq 0$, $u_n = n^2 \left(7 - \frac{1}{n} + \frac{2}{n^2}\right)$, or $n \mapsto \frac{1}{n}$ et $n \mapsto \frac{2}{n^2}$ convergent vers 0, donc $n \mapsto 7 - \frac{1}{n} + \frac{2}{n^2}$ converge vers $0 \in n \mapsto n^2$ diverge vers $0 \in n$

Pour
$$n \neq 0$$
, $u_n = \frac{n}{n\left(1 + \frac{1}{n}\right)} = \frac{1}{1 + \frac{1}{n}}$, comme $\lim_{n \to +\infty} \frac{1}{n} = 0$,

Pour
$$n \neq 0$$
, $u_n = \frac{n}{n\left(1 + \frac{1}{n}\right)} = \frac{1}{1 + \frac{1}{n}}$, comme $\lim_{n \to +\infty} \frac{1}{n} = 0$,

Pour
$$n \neq 0$$
, $u_n = \frac{n}{n\left(1 + \frac{1}{n}\right)} = \frac{1}{1 + \frac{1}{n}}$, comme $\lim_{n \to +\infty} \frac{1}{n} = 0$,

Pour
$$n \neq 0$$
, $u_n = \frac{n}{n\left(1 + \frac{1}{n}\right)} = \frac{1}{1 + \frac{1}{n}}$,

$$\operatorname{comme} \lim_{n \to +\infty} \frac{1}{n} = 0,$$

$$\lim_{n\to+\infty}u_n=1.$$

