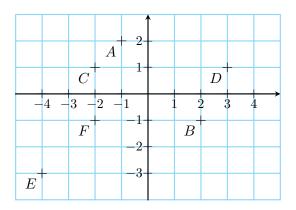
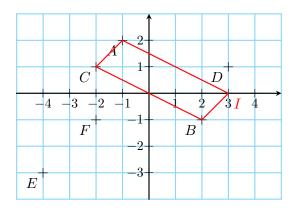
QCM d'auto-évaluation/ex129p222


 $\overline{S} \acute{e} \overline{samath}$

Maths 2de


énoncé

Les coordonnées du point I tel que ACBI soit un parallélogramme sont:

- (-1;1) (3;0) (1;-2) (-5;4)

Point de vue graphique:

C'est la réponse b qui est correcte.

Par le calcul:

Pour que ACBI soit un parallélogramme,

Par le calcul:

Pour que ACBI soit un parallélogramme, il faut et il suffit que $\overrightarrow{CA} = \overrightarrow{BI}$.

Par le calcul:

Pour que ACBI soit un parallélogramme, il faut et il suffit que $\overrightarrow{CA} = \overrightarrow{BI}$.

Le vecteur \overrightarrow{CA} a pour coordonnées $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$,

Par le calcul:

Pour que ACBI soit un parallélogramme, il faut et il suffit que $\overrightarrow{CA} = \overrightarrow{BI}$.

Le vecteur \overrightarrow{CA} a pour coordonnées $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$,

Le vecteur \overrightarrow{BI} a pour coordonnées $\left(\begin{array}{c} x_I - 2 \\ y_I + 1 \end{array} \right)$.

Par le calcul:

Pour que ACBI soit un parallélogramme, il faut et il suffit que $\overrightarrow{CA} = \overrightarrow{BI}$. Le vecteur \overrightarrow{CA} a pour coordonnées $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, Le vecteur \overrightarrow{BI} a pour coordonnées $\begin{pmatrix} x_I - 2 \\ y_I + 1 \end{pmatrix}$. $\overrightarrow{CA} = \overrightarrow{BI}$ si et seulement si $x_I - 2 = 1$ et $y_I + 1 = 1$,

Par le calcul:

Pour que ACBI soit un parallélogramme, il faut et il suffit que $\overrightarrow{CA} = \overrightarrow{BI}$. Le vecteur \overrightarrow{CA} a pour coordonnées $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, Le vecteur \overrightarrow{BI} a pour coordonnées $\begin{pmatrix} x_I - 2 \\ y_I + 1 \end{pmatrix}$. $\overrightarrow{CA} = \overrightarrow{BI}$ si et seulement si $x_I - 2 = 1$ et $y_I + 1 = 1$, c'est-à-dire si et seulement si $x_I = 3$ et $y_I = 0$.

Par le calcul:

Pour que ACBI soit un parallélogramme, il faut et il suffit que $\overrightarrow{CA} = \overrightarrow{BI}$. Le vecteur \overrightarrow{CA} a pour coordonnées $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, Le vecteur \overrightarrow{BI} a pour coordonnées $\begin{pmatrix} x_I - 2 \\ u_I + 1 \end{pmatrix}$. $\overrightarrow{CA} = \overrightarrow{BI}$ si et seulement si $x_I - 2 = 1$ et $y_I + 1 = 1$, c'est-à-dire si et seulement si $x_I = 3$ et $y_I = 0$. C'est la réponse b qui est correcte.