S'entrainer 49 page 207

 $\overline{S}\acute{e}samath$

Maths 1S

(cc) BY-SA

énoncé

On considère l'équation $\cos x = -\frac{\sqrt{2}}{2}$.

- Résoudre cette équation dans $]-\pi$; π] et placer sur le cercle trigonométrique les points correspondants.

 $\hbox{\bf I} \ \ {\rm R\'esoudre} \ \cos x = -\frac{\sqrt{2}}{2} \ {\rm dans} \] -\pi \ ; \ \pi] \ {\rm et \ placer \ sur \ le \ cercle}$ trigonométrique les points correspondants.

 $\begin{tabular}{l} {\bf I} {\bf R\'esoudre} \ \cos x = -\frac{\sqrt{2}}{2} \ {\bf dans} \] -\pi \ ; \ \pi] \ {\bf et} \ {\bf placer} \ {\bf sur} \ {\bf le} \ {\bf cercle} \ {\bf trigonom\'etrique} \ {\bf les} \ {\bf points} \ {\bf correspondants}. \end{tabular}$

On sait que
$$\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
.

Résoudre $\cos x = -\frac{\sqrt{2}}{2}$ dans $]-\pi\ ;\ \pi]$ et placer sur le cercle trigonométrique les points correspondants.

On sait que
$$\cos\left(\frac{3\pi}{4}\right)=-\frac{\sqrt{2}}{2}.$$
 L'équation $\cos x=-\frac{\sqrt{2}}{2}$ a deux solutions dans $]-\pi\ ;\ \pi]$ qui sont $\frac{3\pi}{4}$

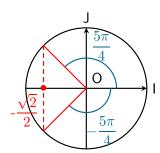
et
$$-\frac{3\pi}{4}$$
.

1 Résoudre $\cos x = -\frac{\sqrt{2}}{2}$ dans $]-\pi\ ;\ \pi]$ et placer sur le cercle trigonométrique les points correspondants.

On sait que
$$\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}.$$

L'équation $\cos x = -\frac{\sqrt{2}}{2}$ a deux solutions dans $]-\pi~;~\pi]$ qui sont $\frac{3\pi}{4}$

et $-\frac{3\pi}{4}$.



 ${\bf 2}$ En déduire l'ensemble des solutions dans ${\mathbb R}$.

 $f \Sigma$ En déduire l'ensemble des solutions dans $\Bbb R$.

Pour obtenir les autres solutions, il suffit d'ajouter un nombre entier de fois 2π aux solutions déjà trouvées.

f Z En déduire l'ensemble des solutions dans $\Bbb R$.

Pour obtenir les autres solutions, il suffit d'ajouter un nombre entier de fois 2π aux solutions déjà trouvées.

Les solutions sont :
$$\frac{3\pi}{4} + 2k\pi$$
 et $-\frac{3\pi}{4} + 2k\pi$, $k \in \mathbb{Z}$.