Exercice 27 page 179

Sésamath

Maths 1S

(co)) BY-SA

énoncé

Déterminer une équation cartésienne de la droite :

- d_1 passant par A(4;-1) et de vecteur directeur $\overrightarrow{u} \begin{pmatrix} -2\\3 \end{pmatrix}$
- d_2 passant par B(0; 0) et de vecteur directeur $\overrightarrow{v} \begin{pmatrix} 1 \\ 5 \end{pmatrix}$
- d_3 passant par C(0; -1) et de vecteur directeur $\overrightarrow{r} \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}$
- d_4 passant par D(1; 1) et de vecteur directeur $\overrightarrow{s} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

1
$$A(4;-1), M(x;y) \text{ donc } \overrightarrow{AM} \begin{pmatrix} x-4 \\ y+1 \end{pmatrix} \text{ et } \overrightarrow{u} \begin{pmatrix} -2 \\ 3 \end{pmatrix},$$

1
$$A(4;-1),M(x;y)$$
 donc $\overrightarrow{AM}\begin{pmatrix} x-4\\y+1\end{pmatrix}$ et $\overrightarrow{u}\begin{pmatrix} -2\\3\end{pmatrix}$, $M\in d_1 \iff \overrightarrow{AM}$ et \overrightarrow{u} colinéaires $\iff 3(x-4)-(-2)(y+1)=0$

11 A(4;-1), M(x;y) donc $\overrightarrow{AM}\begin{pmatrix} x-4\\y+1 \end{pmatrix}$ et $\overrightarrow{u}\begin{pmatrix} -2\\3 \end{pmatrix}$, $M \in d_1 \iff \overrightarrow{AM}$ et \overrightarrow{u} colinéaires $\iff 3(x-4)-(-2)(y+1)=0$ donc $M \in d_1 \iff 3x-12+2y+2=0$

A(4;-1),M(x;y) donc $\overrightarrow{AM}\begin{pmatrix} x-4\\y+1 \end{pmatrix}$ et $\overrightarrow{u}\begin{pmatrix} -2\\3 \end{pmatrix}$, $M \in d_1 \iff \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ colinéaires} \iff 3(x-4)-(-2)(y+1)=0$ donc $M \in d_1 \iff 3x - 12 + 2y + 2 = 0$ Une équation de d_1 est : 3x + 2y - 10 = 0

Suivons dans un premier temps la méthode, $M(x;y) \in d_2 \iff \overrightarrow{BM} \text{ et } \overrightarrow{v} \text{ sont colinéaires, or } \overrightarrow{BM} \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 1 \\ 5 \end{pmatrix} \text{ sont colinéaires } \iff 5x - y = 0 \text{, ce qui est une équation cartésienne de } d_2.$

Sesamath Maths 1S

Suivons dans un premier temps la méthode, $M(x;y) \in d_2 \iff \overrightarrow{BM} \text{ et } \overrightarrow{v} \text{ sont colinéaires, or } \overrightarrow{BM} \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 1 \\ 5 \end{pmatrix} \text{ sont colinéaires } \iff 5x-y=0, \text{ ce qui est une équation cartésienne de } d_2.$

On peut aussi remarquer que cette droite a une ordonnée à l'origine nulle et un coefficient directeur égal à 5,

Sesamath Maths 1S

Suivons dans un premier temps la méthode, $M(x;y) \in d_2 \iff \overrightarrow{BM} \text{ et } \overrightarrow{v} \text{ sont colinéaires, or } \overrightarrow{BM} \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 1 \\ 5 \end{pmatrix} \text{ sont colinéaires } \iff 5x - y = 0 \text{, ce qui est une équation cartésienne de } d_2.$

On peut aussi remarquer que cette droite a une ordonnée à l'origine nulle et un coefficient directeur égal à 5,

donc que son équation réduite est y = 5x, ce qui équivaut à 5x - y = 0

Sesamath Maths 1S Exercice 27 page 179

 $M(x;y) \in d_3 \iff \overrightarrow{CM} \text{ et } \overrightarrow{r} \text{ sont colinéaires, or } \overrightarrow{CM} \left(\begin{array}{c} x \\ y+1 \end{array} \right) \text{ et } \overrightarrow{r} \left(\begin{array}{c} \frac{1}{3} \\ -\frac{1}{2} \end{array} \right)$ sont colinéaires $\iff -\frac{1}{2} \times x - \frac{1}{3} \times (y+1) = 0$,

 $M(x;y) \in d_3 \iff \overrightarrow{CM} \text{ et } \overrightarrow{r} \text{ sont colinéaires, or } \overrightarrow{CM} \begin{pmatrix} x \\ y+1 \end{pmatrix} \text{ et } \overrightarrow{r} \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{\pi} \end{pmatrix}$ 3 sont colinéaires \iff $-\frac{1}{2} \times x - \frac{1}{3} \times (y+1) = 0$, ce qui équivaut à $-\frac{x}{2} - \frac{y}{3} - \frac{1}{3} = 0$ ou encore à $\frac{x}{2} + \frac{y}{2} + \frac{1}{3} = 0$,

 $M(x;y) \in d_3 \iff \overrightarrow{CM} \text{ et } \overrightarrow{r} \text{ sont colinéaires, or } \overrightarrow{CM} \begin{pmatrix} x \\ y+1 \end{pmatrix} \text{ et } \overrightarrow{r} \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{pmatrix}$ sont colinéaires $\iff -\frac{1}{2} \times x - \frac{1}{3} \times (y+1) = 0$, ce qui équivaut à $-\frac{x}{2} - \frac{y}{3} - \frac{1}{3} = 0$ ou encore à $\frac{x}{2} + \frac{y}{3} + \frac{1}{3} = 0$, ce qui est une équation cartésienne de d_3 , en multipliant cette équation par 6, on obtient une équation de d_3 avec des coefficients entiers, à savoir 3x + 2y + 2 = 0.

M(x; y)
$$\in d_4 \iff \overrightarrow{DM} \text{ et } \overrightarrow{s} \text{ sont colinéaires, or } \overrightarrow{CM} \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} \text{ et } \overrightarrow{s} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
 sont colinéaires $\iff 2 \times (x-1) - 0 \times (y-11) = 0$,

Sésa math Maths 1S Exercice 27 page 179

 $M(x;y) \in d_4 \iff \overrightarrow{DM} \text{ et } \overrightarrow{s} \text{ sont colinéaires, or } \overrightarrow{CM} \left(\begin{array}{c} x-1 \\ y-1 \end{array} \right) \text{ et } \overrightarrow{s} \left(\begin{array}{c} 0 \\ 2 \end{array} \right)$ sont colinéaires $\iff 2 \times (x-1) - 0 \times (y-11) = 0$, ce qui équivaut à x-1=0, c'est une équation cartésienne de d_4 .

Sesamath Maths 1S

