QCM d'autoévaluation, exercice 75 page 151

Maths 1S

(cc) BY-SA

énoncé

On considère la suite (w_n) définie par $w_0=4$ et $w_{n+1}=-2w_n+3$ pour tout $n\in\mathbb{N}.$

La suite (w_n) est une suite :

- a) arithmétique
- b) géométrique

 ni arithmétique ni géométrique

Calculons les premiers termes pour se donner une idée,

Calculons les premiers termes pour se donner une idée,

$$w_0 = 4$$
, $w_1 = -2w_0 + 3 = -5$ et $w_1 = -2w_1 + 3 = 13$,

Calculons les premiers termes pour se donner une idée,

$$w_0 = 4$$
, $w_1 = -2w_0 + 3 = -5$ et $w_1 = -2w_1 + 3 = 13$,

 $w_1 - w_0 \neq w_2 - w_1$, donc cette suite n'est pas arithmétique,

Calculons les premiers termes pour se donner une idée,

$$w_0 = 4$$
, $w_1 = -2w_0 + 3 = -5$ et $w_1 = -2w_1 + 3 = 13$,

 $w_1 - w_0 \neq w_2 - w_1$, donc cette suite n'est pas arithmétique,

 $\frac{w_1}{w_0}
eq \frac{w_2}{w_1}$, donc cette suite n'est pas géométrique,

Calculons les premiers termes pour se donner une idée,

$$w_0 = 4$$
, $w_1 = -2w_0 + 3 = -5$ et $w_1 = -2w_1 + 3 = 13$,

 $w_1-w_0
eq w_2-w_1$, donc cette suite n'est pas arithmétique,

 $\frac{w_1}{w_0} \neq \frac{w_2}{w_1}$, donc cette suite n'est pas géométrique,

réponse c).

