Sentraner 51 page 25

 $\overline{S} \acute{e}samath$

Maths 1S

(co) BY-SA

énoncé

Résoudre les inéquations du second degré suivantes dans \mathbb{R} .

$$x^2 + x - 2 > 0$$

$$-3x^2 + x - 2 \le 0$$

$$3 2x^2 + 3x \ge 0$$

$$4 2x^2 - 8 < 0$$

1 Résoudre l'inéquation $x^2 + x - 2 > 0$.

On cherche les racines du polynôme $x^2 + x - 2$.

1 Résoudre l'inéquation $x^2 + x - 2 > 0$.

On cherche les racines du polynôme $x^2 + x - 2$.

 $\Delta=1^2-4\times1\times(-2)=9$; Δ est positif donc il y a deux racines.

1 Résoudre l'inéquation $x^2 + x - 2 > 0$.

On cherche les racines du polynôme $x^2 + x - 2$.

$$\Delta=1^2-4\times 1\times (-2)=9$$
 ; Δ est positif donc il y a deux racines.

$$x_1 = \frac{-1 - \sqrt{9}}{2 \times 1} = -2 \text{ et } x_2 = \frac{-1 + \sqrt{9}}{2 \times 1} = 1$$

1 Résoudre l'inéquation $x^2 + x - 2 > 0$.

On cherche les racines du polynôme $x^2 + x - 2$.

$$\Delta=1^2-4\times 1\times (-2)=9$$
 ; Δ est positif donc il y a deux racines.

$$x_1 = \frac{-1 - \sqrt{9}}{2 \times 1} = -2 \text{ et } x_2 = \frac{-1 + \sqrt{9}}{2 \times 1} = 1$$

 $a=1\ \mathrm{donc}\ a>0$, on en déduit le signe du trinôme :

x	$-\infty$		-2		1		$+\infty$
f(x)		+	0	_	Ó	+	

1 Résoudre l'inéquation $x^2 + x - 2 > 0$.

On cherche les racines du polynôme $x^2 + x - 2$.

$$\Delta=1^2-4\times1\times(-2)=9$$
 ; Δ est positif donc il y a deux racines.

$$x_1 = \frac{-1 - \sqrt{9}}{2 \times 1} = -2 \text{ et } x_2 = \frac{-1 + \sqrt{9}}{2 \times 1} = 1$$

 $a=1\ \mathrm{donc}\ a>0$, on en déduit le signe du trinôme :

x	$-\infty$	-2	1	$+\infty$
f(x)	-	+ 0	- 0	+

$$S = \left] - \infty; -2 \right[\cup \left] 1; + \infty \right[$$

2 Résoudre l'inéquation $-3x^2 + x - 2 \le 0$.

On cherche les racines du polynôme $-3x^2 + x - 2$.

2 Résoudre l'inéquation $-3x^2 + x - 2 \le 0$.

On cherche les racines du polynôme $-3x^2 + x - 2$.

 $\Delta=1^2-4\times(-3)\times(-2)=-23$; Δ est négatif donc il n'y a pas de racine.

2 Résoudre l'inéquation $-3x^2 + x - 2 \le 0$.

On cherche les racines du polynôme $-3x^2 + x - 2$.

 $\Delta=1^2-4\times(-3)\times(-2)=-23$; Δ est négatif donc il n'y a pas de racine.

 $-3x^2+x-2$ est du signe de a c'est à dire négatif pour tout x de $\mathbb R$

2 Résoudre l'inéquation $-3x^2 + x - 2 \le 0$.

On cherche les racines du polynôme $-3x^2 + x - 2$.

 $\Delta=1^2-4\times(-3)\times(-2)=-23$; Δ est négatif donc il n'y a pas de racine.

 $-3x^2+x-2$ est du signe de a c'est à dire négatif pour tout x de $\mathbb R$ donc $S=\mathbb R$

Résoudre l'inéquation $2x^2 + 3x \ge 0$.

On cherche les racines du polynôme $2x^2 + 3x$.

Résoudre l'inéquation $2x^2 + 3x \ge 0$.

On cherche les racines du polynôme $2x^2 + 3x$.

 $\Delta=3^2-4\times2\times0=9$; Δ est positif donc il y a deux racines.

Résoudre l'inéquation $2x^2 + 3x \ge 0$.

On cherche les racines du polynôme $2x^2 + 3x$.

$$\Delta=3^2-4\times2\times0=9$$
 ; Δ est positif donc il y a deux racines.

$$x_1 = \frac{-3 - \sqrt{9}}{2 \times 2} = -\frac{3}{2}$$
 et $x_2 = \frac{-3 + \sqrt{9}}{2 \times 2} = 0$

Résoudre l'inéquation $2x^2 + 3x \ge 0$.

On cherche les racines du polynôme $2x^2 + 3x$.

$$\Delta=3^2-4\times2\times0=9$$
 ; Δ est positif donc il y a deux racines.

$$x_1 = \frac{-3 - \sqrt{9}}{2 \times 2} = -\frac{3}{2}$$
 et $x_2 = \frac{-3 + \sqrt{9}}{2 \times 2} = 0$

 $a=2\ \mathrm{donc}\ a>0$, on en déduit le signe du trinôme :

x	$-\infty$	-	-3/2		0		$+\infty$
f(x)		+	0	_	0	+	

Résoudre l'inéquation $2x^2 + 3x \ge 0$.

On cherche les racines du polynôme $2x^2 + 3x$.

$$\Delta=3^2-4\times2\times0=9$$
 ; Δ est positif donc il y a deux racines.

$$x_1 = \frac{-3 - \sqrt{9}}{2 \times 2} = -\frac{3}{2}$$
 et $x_2 = \frac{-3 + \sqrt{9}}{2 \times 2} = 0$

 $a=2\ \mathrm{donc}\ a>0$, on en déduit le signe du trinôme :

x	$-\infty$		-3/2		0		$+\infty$
f(x)		+	0	_	0	+	

$$S = \left] -\infty; -\frac{3}{2} \right] \cup [0; +\infty[$$

4 Résoudre l'inéquation $2x^2 - 8 < 0$.

On cherche les racines du polynôme $2x^2 - 8$.

4 Résoudre l'inéquation $2x^2 - 8 < 0$.

On cherche les racines du polynôme $2x^2 - 8$.

$$2x^2 - 8 = 0 \Leftrightarrow x^2 = 4$$

4 Résoudre l'inéquation $2x^2 - 8 < 0$.

On cherche les racines du polynôme $2x^2 - 8$.

$$2x^2 - 8 = 0 \Leftrightarrow x^2 = 4$$

 $4\ \mathrm{est}$ positif donc il y a deux racines $-2\ \mathrm{et}\ 2$

4 Résoudre l'inéquation $2x^2 - 8 < 0$.

On cherche les racines du polynôme $2x^2 - 8$.

$$2x^2 - 8 = 0 \Leftrightarrow x^2 = 4$$

4 est positif donc il y a deux racines -2 et 2

a=2 donc a>0, on en déduit le signe du trinôme :

x	$-\infty$		-2		2		$+\infty$
f(x)		+	0	_	0	+	

4 Résoudre l'inéquation $2x^2 - 8 < 0$.

On cherche les racines du polynôme $2x^2 - 8$.

$$2x^2 - 8 = 0 \Leftrightarrow x^2 = 4$$

4 est positif donc il y a deux racines -2 et 2

 $a=2\ \mathrm{donc}\ a>0$, on en déduit le signe du trinôme :

x	$-\infty$		-2		2		$+\infty$
f(x)		+	Ó	_	0	+	

$$S =]-2;2[$$