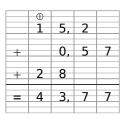
OPÉRATIONS ET NOMBRES DÉCIMAUX

I - Addition et soustraction de nombres décimaux

Pour additionner ou soustraire des nombres décimaux, on place les nombres de sorte que les virgules soient alignées verticalement.

Exemples:



Pour poser l'opération 12 - 6,7, on place les nombres correctement et on ajoute un zéro pour que les deux nombres aient le même nombre de chiffres dans leurs parties décimales (en effet, 12 = 12,0).

	1	₁ 2,	10	
_	1	16,	7	
=	0	5,	3	

Addition bien posée

Addition mal posée

II - Multiplication et division d'un nombre décimal par 10 ; 100 ; 1 000...

Pour multiplier par :	on décale la virgule de :		
10	1 rang vers la droite.		
100	2 rangs vers la droite.		
1 000	3 rangs vers la droite.		

Exemples:

$$0.47 \times 10 = 4.7$$

$$35 \times 100 = 35,00 \times 100 = 3500$$

$$9.82 \times 1$$
 000 = 9.820×1 **000** = 9.820

Pour diviser par :	on décale la virgule de :		
10	1 rang vers la gauche.		
100	2 rangs vers la gauche.		
1 000	3 rangs vers la gauche.		

Exemples:

$$27 \div 10 = 27,0 \div 10 = 2,7$$

$$456.5 \div 100 = 4.565$$

$$0.3 \div 1\,000 = 0000.3 \div 1\,000 = 0.0003$$

III - Multiplication de deux nombres décimaux

A - Multiplication par 0,1; 0,01; 0,001

Multiplier par :	c'est diviser par :		
0,1	10 car $0,1 = \frac{1}{10}$.		
0, 01	100 car $0,01 = \frac{1}{100}$.		
0, 001	1 000 car 0, 001 = $\frac{1}{1000}$.		

Exemples:

$$78 \times 0, 1 = 7,8$$

$$3.5 \times 0.01 = 003.5 \times 0.01 = 0.035$$

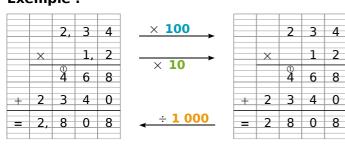
$$56,2 \times 0,001 = 0056,2 \times 0,001 = 0,0562$$

B - <u>Multiplication de deux nombres décimaux</u>

Pour effectuer la multiplication de deux nombres décimaux,

- on effectue d'abord la multiplication sans tenir compte des virgules;
- · puis on place la virgule au produit.

Exemple:



On effectue la multiplication de 234 par 12 sans tenir compte des virgules.

234 est **100** fois plus grand que 2,34 et 12 est **10** fois plus grand que 1,2. Le produit $2,34 \times 1,2$ est donc **1 000** fois plus petit que 2 808. Pour obtenir le résultat, on effectue donc 2 808 \div 1 000.

Finalement 2,34 \times 1,2 = 2,808.

		2,	3	4	2 décimales
	X		1,	2	+ 1 décimale
		4	6	8	
+	2	3	4	0	
=	2,	8	0	8	3 décimales au produit

Le facteur 2,34 a deux chiffres après la virgule.

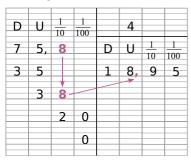
Le facteur 1,2 a un chiffre aprés la virgule.

On doit donc placer la virgule au produit de telle sorte qu'il y ait 2+1=3 chiffres après la virgule.

IV - Division d'un nombre décimal par un nombre entier

Effectuer une division décimale de deux nombres, c'est trouver la valeur exacte ou une valeur approchée du quotient de ces deux nombres.

Exemples:



Dès que l'on abaisse le chiffre des dixièmes du dividende, on place la virgule au quotient.

U	1 10	1 100	1000		9		
4,	9			U O-	1 10 5	1 100 4	1 1000
	4	0		7			7
		4	0				
			4				

Le reste de cette division décimale est nul. On a donc l'égalité : $75.8 = 4 \times 18.95$

et $75.8 \div 4 = 18.95$.

Le nombre 18,95 est **la valeur exacte** du quotient de 75,8 par 4.

Le reste de cette division décimale est 4 millièmes.

On a donc l'égalité : 4,9 =
$$(9 \times 0,544) + \frac{4}{1000}$$

et $4.9 \div 9 \approx 0.544$.

Le nombre 0,544 n'est qu'une valeur approchée au millième du quotient de 4,9 par 9.

V - Ordre de grandeur

Un ordre de grandeur d'un nombre est une valeur approchée simple de ce nombre.

Remarque:

Calculer un ordre de grandeur permet de vérifier mentalement la cohérence d'un résultat.

Exemples:

- On veut déterminer un ordre de grandeur de 546,3 + 52.
 On remplace chaque terme par une valeur plus simple.
 550 est proche de 546,3 et 50 est proche de 52.
 Comme 550 + 50 = 600, la somme 546,3 + 52 est proche de 600.
 On dit que 600 est un ordre de grandeur de 546,3 + 52.
- On veut déterminer un ordre de grandeur de 65,7 × 4,1.
 On remplace chaque facteur par une valeur plus simple.
 65,7 est proche de 65 et 4,1 est proche de 4.
 Comme 65 × 4 = 260, le produit 65,7 × 4,1 est proche de 260.
 260 est donc un ordre de grandeur de 65,7 × 4,1.

Remarque:

Un ordre de grandeur n'est pas unique.

Pour le deuxième exemple, on aurait pu prendre 70 comme valeur proche de 65,7 et 4 comme valeur proche de 4,1. Ce qui aurait donné $70 \times 4 = 280$ comme ordre de grandeur du produit $65,7 \times 4,1$.