CERCLES, DISTANCES

I - Droites, demi-droites, segment

Notation	Signification	Figure
[AB]	Lire : « segment AB ». C'est le segment d'extrémités A et B.	A B
АВ	C'est la longueur du segment [AB].	A B = 3 cm
(AB)	Lire : « droite AB ». C'est la droite qui passe par les points A et B.	B
[AB)	Lire : « demi-droite AB ». C'est la demi-droite d'origine A passant par le point B.	B
A ∈ (d) B ∉ (d)	A appartient à la droite (d). B n'appartient pas à la droite (d).	A (d) × B

II - Vocabulaire de base

Définition	Figure
Trois points sont alignés s'ils appartiennent à une même droite.	B C A A Les points A, B et C sont alignés.
Le milieu du segment [AB] est le point de [AB] qui est équidistant (à la même distance) de A et de B.	O B B O est le milieu de [AB].
Deux droites sécantes sont deux droites qui se coupent en un point. Ce point est appelé point d'intersection.	(d') I est le point d'intersection des droites (d) et (d').

III - Vocabulaire du cercle

Un **cercle** de centre O est l'ensemble des points situés à la même distance du point O. Cette distance est le **rayon** du cercle.

M (\mathfrak{C})	Le centre d'un cercle est le point équidistant de tous les points qui constituent ce cercle.	O est le centre du cercle (${\mathfrak C}$).
E	Un rayon d'un cercle est un segment ayant pour extrémités le centre et un point de ce cercle.	[OA] est un rayon du cercle (${\mathfrak C}$).
0 1	Un diamètre d'un cercle est un segment ayant pour extrémités deux points de ce cercle et contenant son centre.	[EF] est un diamètre du cercle (${\mathcal C}$).
A	Une corde d'un cercle est un segment ayant pour extrémités deux points de ce cercle.	[MN] est une $\operatorname{\mathbf{corde}}$ du $\operatorname{\mathbf{cercle}}$ ($\operatorname{\mathfrak{C}}$).
	Un arc de cercle est une portion de cercle comprise entre deux points de ce cercle.	La portion de cercle \widehat{MN} comprise entre M et N est un arc du cercle (\mathscr{C}).

IV - Triangles

A - Définition

Un triangle est un polygone à trois côtés.

B - Vocabulaire

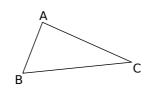
Un triangle a trois sommets et trois côtés.

Exemple:

Le triangle ABC a
• trois **sommets**:
les points A, B et C;

trois côtés :

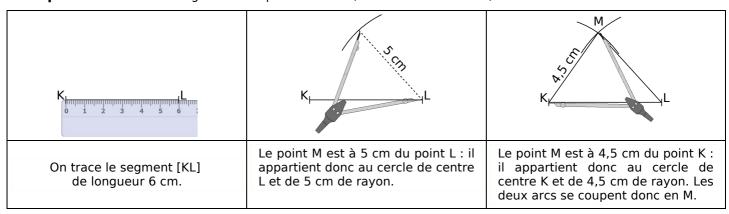
les segments [AB], [BC] et [AC].



Le **sommet opposé** au côté [AB] est le point C. Le **côté opposé** au sommet A est le côté [BC].

C - Construction d'un triangle dont on connaît les longueurs des trois côtés

Exemple: Construis un triangle KLM tel que KL = 6 cm; LM = 5 cm et KM = 4.5 cm.



V - Triangles particuliers

A - Triangle isocèle

Définition:

Un **triangle isocèle** est un triangle qui a deux côtés de même longueur.

Vocabulaire:

- Le sommet commun aux côtés de même longueur est appelé le sommet principal.
- Le côté opposé au sommet principal est appelé la base.

Exemple:



Le triangle ISO est **isocèle en S**. Les longueurs IS et SO sont égales.

- S est le sommet principal du triangle ISO ;
- [IO] est la base du triangle ISO.

B - Triangle équilatéral

Définition:

Un **triangle équilatéral** est un triangle qui a ses trois côtés de même longueur.

Exemple:

Les longueurs QU, QE et EU sont égales.

VI - Quadrilatères

A - Définition

Un quadrilatère est un polygone à quatre côtés.

B - Vocabulaire

- Un quadrilatère a quatre sommets, quatre côtés et deux diagonales.
- Chaque diagonale a pour extrémités deux sommets opposés.
- Chaque côté a pour extrémités deux sommets consécutifs.
- Deux côtés opposés sont deux côtés qui n'ont pas de sommet commun.
- Deux côtés consécutifs sont deux côtés qui ont un sommet commun.

Exemple:

Le quadrilatère EFGH a

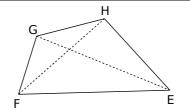
• quatre sommets :

les points E, F, G et H;quatre côtés :

les segments [EF], [FG], [GH] et [HE];

• deux diagonales :

les segments [EG] et [FH].



- E et G sont des sommets opposés.
- E et F sont des sommets consécutifs.
- [EF] et [GH] sont des cotés opposés.
- [EF] et [FG] sont des cotés consécutifs.

VII - Quadrilatère particulier : le losange

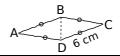
Définition:

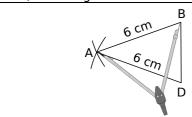
Un losange est un quadrilatère qui a ses quatre côtés de même longueur.

Exemple : Construis un losange ABCD de 6 cm de côté.

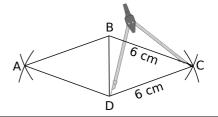
Dans un losange, les quatre côtés ont la même longueur.

Ainsi, les triangles ABD et CBD sont isocèles respectivement en A et C.





On trace un segment [BD]. On construit un triangle ABD isocèle en A tel que AB = AD = 6 cm.



On construit le triangle CBD isocèle en C tel que CB = CD = 6 cm.