lacksquare Soient f et g deux fonctions affines telles que :

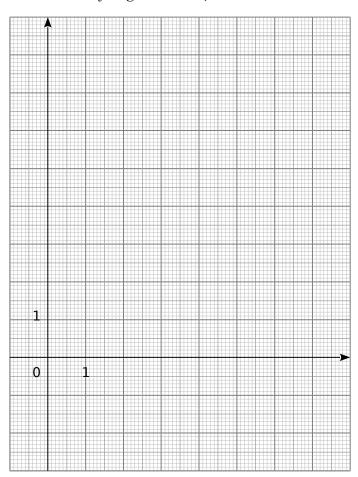
f(0) = -2 et f(5) = 6.5 g(0) = 0.8 et g(5) = 6.8

a. Justifie que ces fonctions ne sont pas linéaires.

**b.** Quelle est la nature de leurs représentations graphiques ?

**c.** Écris f(x) et g(x) sous la forme ax + b où a et b sont des nombres à préciser à chaque fois.

| <br> | <br> |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------|------|--|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| <br> | <br> |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> | <br> |  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> | <br> |  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> | <br> |  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> | <br> |  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


**d.** Détermine par le calcul la valeur de x pour laquelle f(x) = g(x).

|  |      |  | ٠ |  |  |  |  | ٠ |  |  |  |  |      |  |  |  |  |  | ٠ | <br>٠ |  |  |  | <br>٠ | ٠ |      |  |  |  |
|--|------|--|---|--|--|--|--|---|--|--|--|--|------|--|--|--|--|--|---|-------|--|--|--|-------|---|------|--|--|--|
|  |      |  |   |  |  |  |  |   |  |  |  |  | <br> |  |  |  |  |  |   |       |  |  |  |       |   |      |  |  |  |
|  |      |  |   |  |  |  |  |   |  |  |  |  |      |  |  |  |  |  |   |       |  |  |  |       |   |      |  |  |  |
|  |      |  |   |  |  |  |  |   |  |  |  |  |      |  |  |  |  |  |   |       |  |  |  |       |   |      |  |  |  |
|  |      |  |   |  |  |  |  | ٠ |  |  |  |  |      |  |  |  |  |  |   |       |  |  |  |       |   |      |  |  |  |
|  |      |  |   |  |  |  |  |   |  |  |  |  | <br> |  |  |  |  |  |   |       |  |  |  |       |   | <br> |  |  |  |
|  | <br> |  |   |  |  |  |  |   |  |  |  |  |      |  |  |  |  |  |   |       |  |  |  |       |   |      |  |  |  |
|  |      |  |   |  |  |  |  |   |  |  |  |  |      |  |  |  |  |  |   |       |  |  |  |       |   |      |  |  |  |

e. Complète les tableaux de valeurs suivants.

| x    | 0 | 2 | 4 | 6 | 8 | 10 |
|------|---|---|---|---|---|----|
| f(x) |   |   |   |   |   |    |
| g(x) |   |   |   |   |   |    |

**f.** Construis les courbes représentatives  $(d_f)$  et  $(d_g)$  des fonctions f et g dans le repère ci-dessous.



**g.** Retrouve la valeur de x pour laquelle f(x) = g(x) sur le graphique où tu feras apparaître les pointillés nécessaires.

| d'intersection de $(d_f)$ et $(d_g)$ . | actes du point k |
|----------------------------------------|------------------|
|                                        |                  |
|                                        |                  |

i. Résous graphiquement f(x) < g(x).

L'école décide d'acheter un logiciel pour gérer sa bibliothèque. Il y a trois tarifs :

• Tarif A: 19 euros;

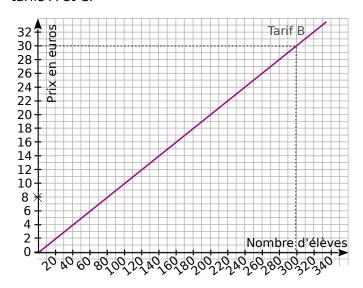
• Tarif B: 10 centimes par élève;

• Tarif C: 8 euros +5 centimes par élève.

a. Compléte le tableau suivant.

| Nombre<br>d'élèves | 100 | 200  | 300  |
|--------------------|-----|------|------|
| Tarif A            | 19€ |      |      |
| Tarif B            |     |      | 30 € |
| Tarif C            |     | 18 € |      |

**b.** Si x représente le nombre d'élèves, entoure la fonction qui correspond au tarif C.


 $x \longmapsto 8 + 5x$ 

 $x \mapsto 8 + 0.05x$ 

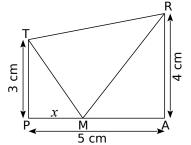
 $x \mapsto 0.05 + 8x$ 

c. Quelle est la nature de cette fonction ?

**d.** Sur le graphique ci-dessous, on a représenté le tarif B. Sur ce même graphique, représente les tarifs A et C.



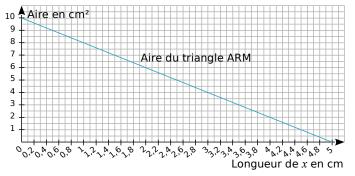
e. Par lecture graphique, à partir de combien d'élèves le tarif A est-il plus intéressant que le tarif C ? (On fera apparaître sur le graphique les tracés nécessaires à la lecture.)


.....

**f.** Dans l'école, il y a 209 élèves. Quel est le tarif le plus intéressant pour l'école ?

TRAP est un trapèze rectangle en A et en P tel que :

TP = 3 cm; PA = 5 cm et AR = 4 cm.


M est un point variable du segment [PA], et on note x la longueur du segment [PM] en cm.



**a.** Donne les valeurs entre lesquelles *x* peut varier.

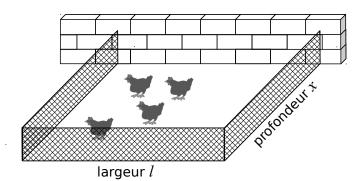
**b.** Montre que l'aire du triangle PTM est 1,5x et que l'aire du triangle ARM est 10 - 2x.

La droite ci-dessous est la représentation graphique de la fonction qui à  $\boldsymbol{x}$  associe l'aire du triangle ARM.



Réponds aux questions **c.**, **d.** et **f.** en utilisant ce graphique. Laisse apparents les traits nécessaires.

**c.** Pour quelle valeur de x l'aire du triangle ARM est-elle égale à 6 cm<sup>2</sup> ?


**d.** Lorsque x est égal à 4 cm, quelle est l'aire du triangle ARM ?

**e.** Sur ce graphique, trace la droite représentant la fonction :  $x \mapsto 1,5x$ .

**f.** Estime, à un millimètre près, la valeur de x pour laquelle les triangles PTM et ARM ont la même aire.

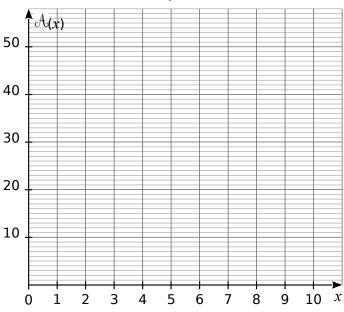
**g.** Montre par le calcul que la valeur exacte de x, pour laquelle les deux aires sont égales, est  $\frac{100}{35}$ .

4 Un agriculteur souhaite réaliser un enclos rectangulaire contre un mur pour ses poules. Il dispose de 21 m de grillage et doit tout utiliser.



L'objectif de cet exercice est de déterminer les dimensions de l'enclos afin que son aire soit maximale. On note l et x respectivement la largeur et la profondeur de l'enclos, en mètres.

- **a.** Quelle est l'aire de l'enclos si x = 3 m?
- **b.** Quelles sont les valeurs possibles de x ?
- **c.** On note  $\mathcal{A}$  la fonction qui, à x, associe l'aire de l'enclos correspondant. Détermine  $\mathcal{A}$ .
- **d.** Avec l'aide de ta calculatrice ou d'un tableur, complète le tableau de valeurs de la fonction  $\mathcal{A}$ .


| x    | 0 | 1 | 2 | 3 | 4 | 5 |
|------|---|---|---|---|---|---|
| A(x) |   |   |   |   |   |   |

| 3 | c   | 6 | 7 | 8 | 9 | 10 | 10,5 |
|---|-----|---|---|---|---|----|------|
| A | (x) |   |   |   |   |    |      |

e. À l'aide du tableau, décris l'évolution de  $\mathcal{A}(x)$  en fonction de x et donne un encadrement du nombre x pour lequel  $\mathcal{A}(x)$  semble maximal.



**f.** Construis la courbe représentative de A.



**g.** Complète ce nouveau tableau de valeurs puis donne un encadrement au dixième du nombre x pour lequel  $\mathcal{A}(x)$  semble maximal.

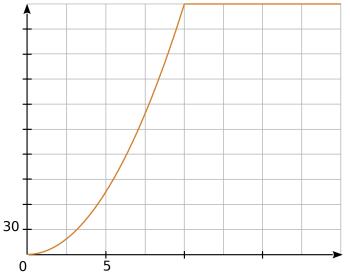
| x    | 4,8 | 4,9 | 5 | 5,1 | 5,2 | 5,3 | 5,4 |
|------|-----|-----|---|-----|-----|-----|-----|
| A(x) |     |     |   |     |     |     |     |

**h.** Calcule A(5,25) - A(x) puis montre que cette expression est égale à  $2(x - 5,25)^2$ .

i. Détermine le signe de cette expression et déduis-en la valeur du nombre x pour lequel  $\mathcal{A}(x)$  est maximal.

j. Déduis-en les dimensions de l'enclos d'aire maximale.

| 5  | La vitesse d'un train en km/h, t minutes  | après le |
|----|-------------------------------------------|----------|
| dé | part, vaut $3t^2$ pour $0 \le t \le 10$ . |          |


On appelle v la fonction qui, au temps écoulé depuis le départ exprimé en minutes, associe la vitesse du train en km/h.

**a.** Calcule v(5).

Donne une interprétation du résultat.

**b.** Quel est l'antécédent de 168,75 par *v* ? Donne une interprétation du résultat.

Le graphique ci-dessous représente l'évolution de la vitesse, en km/h, du train en fonction du temps écoulé, en minutes, depuis son départ.



c. Combien de temps, environ, met le train pour atteindre 120 km/h?

d. Quelle est la vitesse maximale du train? Au bout de combien de temps est-elle atteinte?

e. Précise une expression de la fonction v pour

 $0 \le x \le 20$ .

6 Un entreprise fabrique chaque jour un produit. On appelle x la masse journalière produite en kg. xpeut varier entre 0 et 45. Le coût de production de ces x kg de produit exprimé en euros est donné par la formule :  $C(x) = x^2 - 20x + 200$ . Le prix de vente de ce produit est de 34 € le kg. On suppose que tous les objets fabriqués sont vendus.

a. Quel est le coût de production pour 10 kg de produit?

b. Quelle la recette liée à la vente de ces 10 kg?

c. Ouel est le bénéfice réalisé ?

**d.** Détermine la recette R(x) réalisée lorsque l'entreprise fabrique et vend x kg de produit.

**e.** Détermine le bénéfice B(x) correspondant.

f. Trace dans un repère la représentation graphique de la fonction B.

**g.** Pour quelle valeur de x, le bénéfice est-il maximal? Quel est alors ce bénéfice?