Cours et méthodes

1 Utiliser le théorème de Thalès

Propriété

Soient deux droites (d) et (d') sécantes en A. B et M sont deux points de (d) distincts de A. C et N sont deux points de (d') distincts de A.

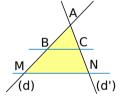
Si les droites (BC) et (MN) sont **parallèles** alors $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

La Entraîne-toi à Calculer une longueur avec le théorème de Thalès

■ Énoncé

Sur la figure ci-dessous, les droites (BC) et (MN) sont parallèles. AB = 3 cm; AN = 4 cm et AM = 7 cm.

Calcule la longueur AC.



■ Énoncé

Sur la figure ci-dessous, les droites (CD) et (HT) sont parallèles.

On donne DG = 25 mm; GH = 45 mm; CG = 20 mmet HT = 27 mm. Calcule GT.

Correction

Les droites (BM) et (CN) sont sécantes en A. Les droites (MN) et (BC) sont parallèles.

D'après le théorème de Thalès, on a

$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN}, \text{ soit } \frac{3}{7} = \frac{AC}{4} = \frac{BC}{MN}.$$
Calcul de AC: $7 \times AC = 3 \times 4$ soit

Calcul de AC : $7 \times AC = 3 \times 4$ soit AC = $\frac{3 \times 4}{7} = \frac{12}{7}$ donc AC = $\frac{12}{7}$ cm.

Correction

Les droites (DH) et (CT) sont sécantes en G. Les droites (CD) et (HT) sont parallèles. D'après le théorème de Thalès, on a

$$\frac{GC}{GT} = \frac{GD}{GH} = \frac{CD}{HT}, \text{ soit} \left(\frac{20}{GT} = \frac{25}{45}\right) = \frac{CD}{27}.$$

Calcul de GT : $25 \times GT = 45 \times 20$. GT = $\frac{45 \times 20}{25}$ donc GT = 36 mm.

¥ Entraîne-toi à Justifier que deux droites ne sont pas parallèles

■ Énoncé

Sur la figure ci-contre,

TR = 11 cm;

TS = 8 cm;

TM = 15 cm et

TE = 10 cm.

Montre que les droites (RS) et (ME) ne sont pas parallèles.

Correction

Les droites (ES) et (MR) sont sécantes en T.

$$\frac{TR}{TM}=\frac{11}{15}=\frac{22}{30}$$
 et $\frac{TS}{TE}=\frac{8}{10}=\frac{24}{30}$. On constate

que $\frac{TR}{TM} \neq \frac{TS}{TE}$. D'après le théorème de Thalès,

(RS) et (ME) ne sont pas parallèles.

2) Utiliser la réciproque du théorème de Thalès

Réciproque du théorème de Thalès

Soient (d) et (d') deux droites sécantes en A. B et M sont deux points de (d) distincts de A et C et N sont deux points de (d') distincts de A.

Si les points A, B, M d'une part, et les points A, C, N d'autre part, sont alignés

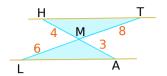
dans le même ordre et si $\frac{\dot{A}M}{AB} = \frac{AN}{AC}$, alors les droites (BC) et (MN) sont parallèles.

Cours et méthodes

2 Entraîne-toi à Justifier que deux droites sont parallèles

■ Énoncé

Les droites (LA) et (HT) sont-elles parallèles ?



Correction

On a
$$\frac{MH}{MA} = \frac{4}{3}$$
 et $\frac{MT}{ML} = \frac{8}{6} = \frac{4}{3}$.

On constate que
$$\frac{MH}{MA} = \frac{MT}{ML}$$
.

De plus, les points A, M, H d'une part et les points L, M, T d'autre part sont alignés dans le même ordre.

Donc d'après la réciproque du théorème de Thalès, les droites (AL) et (HT) sont parallèles.

Agrandir ou réduire une figure

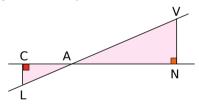
Propriété

Lorsque deux figures ont la même forme et des longueurs proportionnelles, on dit que l'une est un agrandissement ou une réduction de l'autre.

Entraîne-toi à Reconnaître une réduction ou un agrandissement

■ Énoncé

Les droites (VL) et (CN) sont sécantes en A. (LC) et (VN) sont perpendiculaires à (CN). Le triangle LAC est-il une réduction du triangle VAN ? Justifie ta réponse.



Correction

Les droites (CN) et (VL) sont sécantes en A. Les droites (LC) et (NV) sont perpendiculaires à la même droite (AN) donc elles sont parallèles. D'après le théorème de Thalès, on

en déduit que
$$\frac{AN}{AC} = \frac{AV}{AL} = \frac{NV}{LC}$$
.

Les longueurs de VAN et LAC sont proportionnelles. LAC est une réduction de VAN.

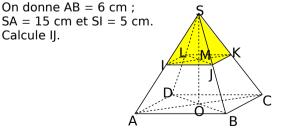
» Remarque: Les triangles LAC et VAN sont deux triangles qui ont la même forme.

Entraîne-toi à Calculer des longueurs réduites ou agrandies

■ Énoncé

La pyramide SIJKL est une réduction de la pyramide SABCD.

SA = 15 cm et SI = 5 cm. Calcule II.



Correction

On sait que la pyramide SIJKL est une réduction de rapport k de la pyramide SABCD. Donc les longueurs des deux pyramides sont proportionnelles.

[SI] étant une réduction de rapport k de [SA], on en déduit que : $k = \frac{SI}{SA} = \frac{5}{15} = \frac{1}{3}$.

De même, [IJ] est une réduction de rapport $\frac{1}{2}$

Donc IJ = $k \times AB = \frac{1}{3}AB = \frac{1}{3} \times 6 = 2$ cm.

4) Transformer avec l'homothétie

Définition

M' est l'image de M par l'homothétie de centre O et de rapport k (k un nombre réel différent de 0) lorsque :

0 M M' k > 0

- si k est positif : M' \in [OM) ou si k est négatif : O \in [MM']
- $M' \circ M = k < 0$
- OM' = k OM si k est positif, OM' = -k OM si k est négatif

» Remarque 1

- Si k > 1 ou k < -1, la figure image est un agrandissement de la figure initiale.
- Si -1 < k < 0 ou 0 < k < 1, la figure image est une réduction de la figure initiale.

Propriétés

Par une homothétie de rapport k (k étant un nombre réel), l'image

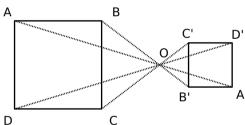
- d'une droite est une droite qui lui est parallèle
- d'un segment [MN] est un segment [M'N'] de longueur k MN (si k > 0) ou -k MN (si k < 0)
- » Remarque 2 : L'image d'un triangle par une homothétie est un triangle dont les côtés sont parallèles et proportionnels aux côtés initiaux. Le théorème de Thalès s'applique!

Entraîne-toi à Construire l'image d'une figure par homothétie

■ Énoncé

Trace un carré ABCD et place un point O à l'extérieur. Construis A'B'C'D', image du quadrilatère ABCD par l'homothétie de centre O et de rapport -0,5.

Correction



5 Triangles semblables

Définition

Deux triangles sont **semblables** si les angles de l'un sont égaux aux angles de l'autre.

Propriété

Si deux triangles sont semblables alors les longueurs des côtés de l'un sont proportionnelles aux longueurs des côtés de l'autre. Et réciproquement.

