Cours et méthodes

1) Déterminer une aire

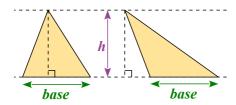
Formules d'aire

Rectangle : $A = \text{Longueur} \times \text{largeur}$

Carré : $A = côté^2$

Triangle quelconque:

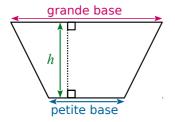
 $A = base \times hauteur \div 2$



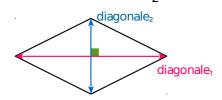
Disque : $\mathcal{A} = \pi \times \text{rayon}^2$

Trapèze:

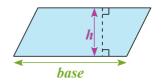
 $\mathcal{A} = \frac{(\text{grande base} + \text{petite base}) \times \text{hauteur}}{2}$



Losange: $A = \frac{\text{diagonale}_1 \times \text{diagonale}_2}{2}$



Parallélogramme : $A = base \times hauteur$



Enveloppe latérale d'un prisme droit ou d'un cylindre de révolution :

A = Périmètre de la base × hauteur

Sphère : $\mathcal{A} = 4 \times \pi \times \text{rayon}^2$.

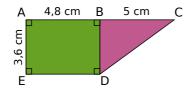
¥ Entraîne-toi à Calculer des aires

■ Énoncé

Quelle est l'aire \mathcal{A} d'un disque de rayon 7 m ? Donner la valeur exacte puis un arrondi au dm^2 près.

■ Énoncé

Calcule l'aire de la figure ABCDE ci-contre.



Correction

La formule de l'aire du disque est : $\mathcal{A} = \pi \times r^2$.

Ici, $\mathcal{A} = \pi \times (7 \text{ m})^2$ $\mathcal{A} = 49 \times \pi \text{ m}^2$ $\mathcal{A} \approx 153,94 \text{ m}^2$

Correction : La figure est constituée d'un rectangle ABDE et d'un triangle rectangle BCD.

La formule de l'aire d'un rectangle est :
 \$\mathcal{A}\$ = Longueur \times largeur

Ici, $A_{ABDE} = 4.8 \text{ cm} \times 3.6 \text{ cm} = 17.28 \text{ cm}^2$

 La formule de l'aire d'un triangle rectangle est : A = base × hauteur ÷ 2

Ici, $A_{BCD} = 3.6 \text{ cm} \times 5 \text{ cm} \div 2 = 9 \text{ cm}^2$

 $\mathcal{A}_{ABCDE} = \mathcal{A}_{ABDE} + \mathcal{A}_{BCD} = 17,28 \text{ cm}^2 + 9 \text{ cm}^2$

 $\mathcal{A}_{ABCDE} = 26,28 \text{ cm}^2$

Cours et méthodes

2) Déterminer un volume

Formules de volume

Cube : $V = côté^3$

Pavé droit :

 $V = longueur \times largeur \times hauteur$

Prisme Droit:

V =Aire de la base \times hauteur

Cylindre de révolution :

 $\tilde{V} = \pi \times \text{rayon}^2 \times \text{hauteur}$

Pyramide:

 $V = \frac{\text{Aire de la base} \times \text{hauteur}}{3}$

Cône de révolution :

$$V = \frac{\pi \times rayon^2 \times hauteur}{3}$$

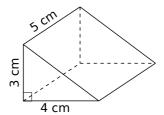
Boule:

$$\mathcal{V} = \frac{4}{3} \times \pi \times \text{rayon}^3$$

<u>u</u> Entraîne-toi à Calculer des volumes

■ Énoncé

Détermine le volume du prisme droit suivant.



■ Énoncé

Calcule le volume d'une pyramide de hauteur 2,50 m ayant pour base un losange de diagonales 4 m et 4,20 m.

Correction

La formule du volume d'un prisme droit est :

 $V = Aire de la base \times hauteur$

Ici. la base est un triangle.

La formule de son aire est :

 $A = base \times hauteur \div 2$

Ici $A = 4 \text{ cm} \times 3 \text{ cm} \div 2 = 6 \text{ cm}^2$

Donc $V = 6 \text{ cm}^2 \times 5 \text{ cm}$

 $V = 30 \text{ cm}^3$.

Correction

La formule du volume d'une pyramide est :

 $V = Aire de la base \times hauteur \div 3$

Ici, la base est un losange.

La formule de son aire est :

 $\mathbf{A} = \frac{\mathsf{diagonale}_1 \times \mathsf{diagonale}_2}{\mathsf{diagonale}_2}$

2

 $Ici A = 4 cm \times 4.2 cm \div 2 = 8.4 cm^2$

Donc $V = 8.4 \text{ cm}^2 \times 2.5 \text{ cm} \div 3$

 $V = 7 \text{ cm}^3$.

Correction

La formule du volume de la boule est :

$$V = \frac{4}{3} \times \pi \times \text{rayon}^3$$
.

Ici
$$V = \frac{4}{3} \times \pi \times 5^3$$

$$V = \frac{500}{3} \, \pi \, \text{cm}^3.$$

$$V \approx 523.6 \text{ cm}^3$$

■ Énoncé

Calcule le volume d'une boule de rayon 5 cm. Donne la valeur exacte puis un arrondi au dixième près.

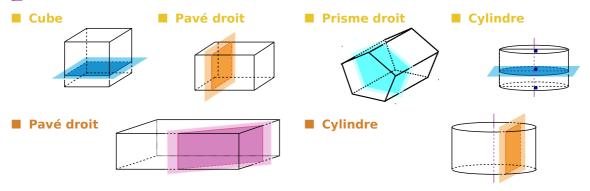
4) Utiliser un agrandissement ou une réduction

A. Sections de solides

Propriétés

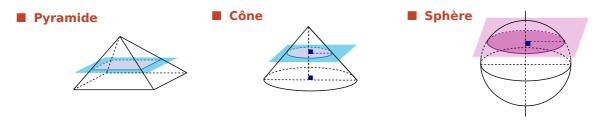
Dans un cube, un pavé droit, un prisme droit et un cylindre,

- une section parallèle à une face est de même nature et de mêmes dimensions que cette face;
- une section parallèle à une arête (ou à l'axe pour le cylindre) est un rectangle, dont l'une des dimensions correspond à la longueur de cette arête (ou à l'axe).



Propriétés

- Dans un cône ou une pyramide, une section parallèle à une face est de même nature que la face mais de taille réduite.
- Dans une sphère, une section parallèle à un grand cercle est un cercle de rayon réduit par rapport à celui du grand cercle.



B. Calculs en utilisant les sections

Propriété

Lors d'un agrandissement ou d'une réduction de rapport k (k > 0),

- les longueurs sont multipliées par k,
- les aires sont multipliées par k^2 ,
- les volumes sont multipliés par k^3

Cours et méthodes

Entraîne-toi à Calculer l'aire ou le volume d'un objet agrandi ou réduit

■ Énoncé

Des ingénieurs ont construit une maquette au 1/5 000 d'un bassin de retenue. La maguette mesure 1,60 m de long et

contient 5 L d'eau. La surface du lac artificiel est 80 dm².

Quelle sera, en km, la longueur du futur lac artificiel?

Quelle sera, en km², sa surface ? Quel sera, en m³, le volume d'eau contenu dans le lac?

Correction

Pour obtenir les longueurs réelles à partir des longueurs de la maquette au 1/5 000, le coefficient d'agrandissement est k = 5 000.

•
$$L_{r\'eelle} = k \times L_{maquette}$$

 $L = 5\ 000 \times 1.6$
 $L = 8\ 000\ m$

Le lac mesure 8 km.

• $A_{\text{r\'eelle}} = k^2 \times A_{\text{maguette}}$ $A = (5 \ 000)^2 \times 80 \ dm^2$ $A = 2 000 000 000 dm^2$ La surface du lac est 20 km².

• $V_{réel} = k^3 \times V_{maquette}$ $V = (5\ 000)^3 \times 5\ L$ Or, 1 m³ correspond à 1 000 L $V = (5 \ 000)^3 \times 0,005 \ m^3$ $V = 625 000 000 \text{ m}^3$ La contenance du lac est de 625 000 000 m³ d'eau.

Mesurer avec des grandeurs composées

- les unités d'aire et de volume sont des grandeurs produits : $m^2 = m \times m$ et cm 3 = cm × cm × cm
- le débit, la vitesse, la masse volumique sont des grandeurs quotients.

Entraîne-toi à Convertir des grandeurs composées

■ Énoncé

La masse volumique du fer vaut 7,84 g·cm⁻³. Convertis-la en kg·m⁻³.

Correction

« La masse volumique du fer vaut 7,84 g·cm⁻³ » signifie que 1 cm³ de fer a une masse de 7,84 g.

Ainsi, 7,84 g·cm⁻³ =
$$\frac{7,84 \text{ g}}{1 \text{ cm}^3} = \frac{0,007 \text{ 84 kg}}{0,000 \text{ 001 m}^3}$$

$$\frac{0,007 \text{ 84}}{0,000 \text{ 001}} = 7 \text{ 840}.$$

La masse volumique du fer vaut donc 7 840 kg·m⁻³.

■ Énoncé

Le 3 avril 2007, la rame TGV d'essai n°4402 établissait un nouveau record de vitesse officiel de 574,8 km·h-1. Convertis cette vitesse en m·s⁻¹.

Correction

La formule donnant la vitesse est :

$$vitesse = \frac{distance}{temps}$$

soit : 574,8 km·h⁻¹ =
$$\frac{574.8 \text{ km}}{1 \text{ h}} = \frac{574.800 \text{ m}}{3.600 \text{ s}}$$

$$\frac{574\ 800}{3\ 600}\approx 159,7$$

La vitesse de cette rame de TGV était alors d'environ 159.7 m·s⁻¹.