
Inégalités et inéquations

Série 1 : Notion d'inéquation

Série 2 : Résolutions

Série 3 : Représentations graphiques

Série 4 : Problèmes

Le cours avec les aides animées

- Q1. Qu'est-ce qu'une inéquation?
- Q2. Quel est le symbole qui correspond à « est supérieur ou égal à »?
- **Q3.** x et y sont deux nombres tels que x y > 0; quel est le plus petit des deux nombres ?

Les exercices d'application

- 1 Comparaisons
- **a.** Sachant que x = -2, compare 2x 3 et 3x + 2.

D'une part, $2x - 3 = 2 \times (-2) - 3 = \dots$; d'autre part, $3x + 2 = \dots$

b. Sachant que a=6, compare $\frac{2}{3}a-5$ et $\frac{a}{2}-4$.

D'une part,; d'autre part,

Donc

2 Versions

Traduis par une phrase les inégalités suivantes.

a. $x \ge -2$

Le nombre *x* est

b. 3 > x

......

c. $\frac{1}{4}x < 3$

3 Thèmes

Traduis par une inégalité les phrases suivantes.

a. Le double de x est inférieur ou égal à 7.

b. La somme de 3 et du triple de x est strictement

supérieure à 5.

c. Le produit de 12 par y est strictement inférieur à la différence de 3 et de y.

4 Solutions d'une inéquation

Parmi les nombres -3; -2.5 et 4, indique lesquels sont solutions des inéquations.

a. $4x \ge -10$

 $4 \times (-3) = \dots$, or

donc – 3

b. 4 - 3x < 13

5 Tester une inégalité

a. L'inégalité 5x - 3 > 1 + 3x est-elle vérifiée pour

On remplace x par 0 dans chaque membre de l'inégalité.

D'une part, $5x - 3 = 5 \times 0 - 3 = \dots$; d'autre part, = =

On constate que Donc l'inégalité pour x = 0.

b. L'inégalité $3x - \frac{1}{2} \ge x + 1$ est-elle vérifiée pour $x = \frac{3}{4}$?

D'une part,;

d'autre part,

a. L'inégalité $5(x-3) \ge 3x + 7$ est-elle vérifiée pour x = -2?

D'une part,;

SÉRIE 2: RÉSOLUTIONS

Le cours avec les aides animées

- Q1. Que veut dire « résoudre une inéquation »?
- **Q2.** Si on ajoute un nombre négatif à chaque membre d'une inégalité, que se passe-t-il ?
- **Q3.** Si on multiplie par un nombre négatif chaque membre d'une inégalité, que se passe-t-il ?

Les exercices d'application

- 1 Comparaisons
- **a.** Sachant que x < 5,
- quelle inégalité vérifie x + 3 ?

On ajoute à chaque membre de l'inégalité donc on le sens de l'inégalité. $x + \dots < 5 + \dots$ donc $x + 3 < \dots$.

quelle inégalité vérifie x – 3 ?

On ajoute à chaque membre de l'inégalité donc on le sens de l'inégalité. $x-\ldots<5-\ldots$. donc $x-3<\ldots$.

quelle inégalité vérifie 3x ?

On multiplie chaque membre de l'inégalité par qui est donc on le sens de l'inégalité. \times $x < 5 \times$ donc 3x <

• quelle inégalité vérifie – 2x?

On multiplie chaque membre de l'inégalité par qui est donc on le sens de l'inégalité. $\times x > 5 \times$ donc -2x >

b. Sachant que $a \ge -12$, complète avec un symbole d'inégalité et un nombre.

$$2a \geqslant \dots$$

$$-3a \dots \dots \qquad a+20 \dots \dots$$

$$-\frac{1}{4}a \dots \dots \qquad \frac{1}{2}a \dots \dots$$

- 2 Calcul d'erreurs
- **a.** Encadre le périmètre P d'un carré dont le côté c est compris entre 3,2 et 3,3 cm.

Le périmètre d'un carré de côté c est

On sait que 3,2 < c < 3,3 et est un nombre positif donc on ne change pas le sens de l'égalité.

 $.... \times 3,2 < < 3,3 \times$ Ainsi < P <

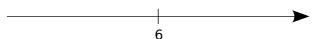
b. La calculatrice de Mathieu est tombée en panne et le professeur demande un encadrement à 10^{-2} près du nombre $-2,5\pi$. Comment aider Mathieu ?
$\pi\approx 3,1416$ donc 3,141 $<\pi<$ On multiplie chaque membre de l'inégalité par qui est donc on le sens de l'inégalité. 3,141 \times $>-2,5\pi>\times$ d'où $<-2,5\pi<$
Conclusion :
$\sqrt{3}\approx 1,7321$ donc
Résoudre une inéquation simple (1)a. Résous l'inéquation x + 4 < - 7.Onà
donc on le sens de l'inégalité. $x + 4$ d'où x d'où x
b. Résous l'inéquation $3x < -2$.
donc on
3x 2 d'où x c. Résous l'inéquation - $2x$ < 8.

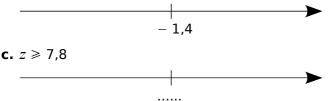
..... d'où *x*

SÉRIE 2: RÉSOLUTIONS

4 Résoudre une inéquation simple (2) a. Résous l'inéquation $x - 4 > 12$. $x - 4 + \dots 12 + \dots d$ 'où $x \dots$ b. Résous l'inéquation $-4x \ge 48$. $\frac{-4x}{\dots} \dots \frac{48}{\dots} d$ 'où $x \dots$ c. Résous l'inéquation $-x \le -3$. On remarque que $-x = \dots \times x$. $\frac{-\dots x}{\dots} \dots \frac{-3}{\dots} d$ 'où $x \dots$	b. Résous l'inéquation $-6(2x + 2) \ge 3x - 27$. c. Résous $1,5(2x - 3) + 2,5 < -0,5(3x - 14)$.
5 Plus complexe (1) a. Résous l'inéquation $-3x + 15 \ge -72 - 2x$.	
On	7 Des inéquations singulières a. Résous l'inéquation $12x + 3 > 12x$. On
c. Résous l'inéquation $x + \frac{1}{4} \le 2x - \frac{2}{3}$.	
	8 Deux inéquations a. Résous l'inéquation $-2x + 7 > 9$.
6 Plus complexe (2) a. Résous l'inéquation $5(x-2) \le 4x-2$.	b. Résous l'inéquation $3x + 5 > -4$.
On développe et on réduit le premier membre. Puis on résout l'inéquation	c. Quel est l'entier qui vérifie les deux inégalités précédentes ?

Le cours avec les aides animées


Q1. Donne la signification des symboles < et \ge .

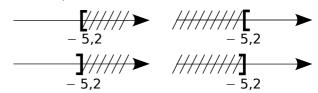

Q2. De quel côté est tourné le crochet dans la représentation graphique d'une inégalité ?

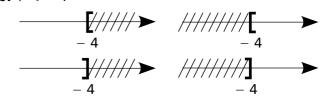
Les exercices d'application

1 À tracer

Représente graphiquement les inégalités suivantes. Colorie les solutions.

2 Le bon côté

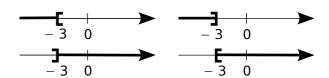

Représente graphiquement les solutions de chaque inégalité. Hachure ce qui n'est pas solution.


3 La bonne représentation

Pour chaque inégalité, entoure le graphique où sont hachurés les nombres qui ne sont pas solutions.

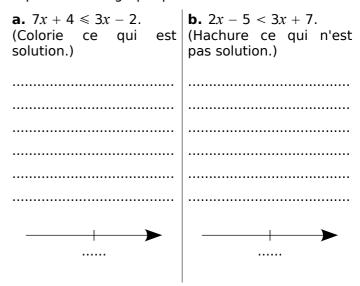
a. u > -5.2

b. $v \le -4$



4. Sans résoudre

a. 0 est-il solution de 3x - 2 > 4x + 1?


Pour x = 0,

b. Parmi les représentations suivantes, entoure celle qui représente les solutions de l'inéquation 3x - 2 > 4x + 1.

5 Attention à la consigne

Résous les inéquations suivantes et trace une représentation graphique de leurs solutions.

Le cours avec les aides animées

Q. Quelles sont les étapes de la résolution d'un problème par une mise en inéquation ?

Les exercices d'application

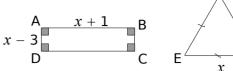
1 Parc de loisirs

Un parc de loisirs propose plusieurs tarifs.

Formule A : 7 € par entrée.

Formule B: un abonnement annuel de 35 € puis 4,50 € par entrée.

a. À partir de combien d'entrées la formule B est-elle plus avantageuse que la formule A?


Choix de l'inconnue

On désigne par x le nombre d'entrées achetées au cours d'une année.

Mise en inéquation du problème

Le prix payé avec la formule $\mathbf A$ en fonction de x est
Le prix payé avec la formule B en fonction de x est
La formule B est donc plus avantageuse lorsque
Résolution de l'inéquation
<u>Conclusion</u> : La formule B est plus avantageuse
que la formule A lorsqu'on achète
b. Ce parc propose aussi un troisième tarif. Formule C : un abonnement annuel de 143 € pour un nombre illimité d'entrées.
À partir de combien d'entrées la formule C est-elle plus avantageuse que la formule B ?

2 Périmètres

ABCD est un rectangle et EFG est un triangle équilatéral. x désigne un nombre strictement supérieur à 3.	
a. Exprime le périmètre de ABCD et le périmètre de EFG en fonction de \boldsymbol{x} .	
b. Détermine les valeurs de x pour lesquelles le périmètre du rectangle est strictement inférieur à celui du triangle.	
3 Extrait du Brevet	
Un bureau de recherche emploie 27 informaticiens et 15 mathématiciens. On envisage d'embaucher le même nombre x d'informaticiens et de mathématiciens. Combien faut-il embaucher de spécialistes de chaque sorte pour que le nombre de mathématiciens soit au moins égal aux deux tiers du nombre d'informaticiens ?	