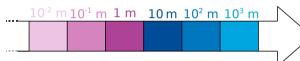
Travailler en groupe


1 Si j'étais une fourmi...

1^{re} Partie : Référentiel

Voici une liste de seize êtres ou objets :

Diamètre du soleil Électron Fourmi Enfant Tour Eiffel Ballon Bactérie Bille Cellule humaine Noyau d'un atome Une année-lumière Diamètre d'un cheveu Tour de Pise Atome Diamètre de la galaxie Distance Terre/Soleil

a. Construisez une frise graduée de 10^{-15} m à 10^{20} m selon le modèle ci-dessous puis placez chacun de ces êtres ou objets dans une des cases de la frise :

- **b.** Répondez alors aux questions suivantes :
 - Par combien sont multipliées les distances si vous passez d'une case à la case située à sa droite?
 - Expliquez comment on doit procéder sur la frise pour trouver un objet mille fois plus petit qu'un objet donné.
- c. Complétez les phrases suivantes :
 - Un ballon est ... fois plus petit que la Tour Fiffel
 - Une fourmi est ... fois plus grande qu'une cellule humaine.
 - ... est 1 000 fois plus petit qu'une bille.
 - ... est 100 fois plus grand qu'une bactérie.
- **d.** Construisez quatre autres phrases sur le modèle de la question précédente.

2^e Partie : Relativité

- **e.** Complétez :
- « Si un enfant était une fourmi, alors un... lui semblerait aussi grand qu'une montagne. ».
- **f.** Construisez quatre autres phrases sur ce modèle.
- **g.** <u>Défi</u>: Choisissez un des êtres ou objet et construisez cinq questions sur le modèle suivant :
 - « Si un enfant était... alors... .».
- **h.** Échangez ces questions avec un autre groupe et répondez-y.

2 Dans le coeur des micros

1re Partie: Parlons chiffre

En informatique, on utilise seulement des 0 et des 1 pour coder les nombres. On travaille avec un système de numération binaire.

Écriture binaire	Écriture décimale	Lien entre les deux écritures		
1	1	1 × 2°		
10	2	$1 \times 2^1 + 0 \times 2^0$		
11	3	$1 \times 2^1 + 1 \times 2^0$		
100	4	$1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$		

- **a.** Observez bien la table de correspondance précédente puis déterminez l'écriture en binaire des entiers inférieurs à 10.
- **b.** Reproduisez la feuille de calcul suivante sur un tableur :

	Α	В	С	D	Е	F	G	Н
1	Nom							
2	0	1	1	1	1	1	0	1
3	Nombre en écriture décimale							

Programmez en G3 le calcul nécessaire pour obtenir l'écriture décimale d'un nombre en binaire.

2^e Partie: La table ASCII

L'unité d'enregistrement en informatique est le **bit**, symbolisé par un 0 ou un 1. Un **octet** correspond à une suite de huit bits, par exemple 0100 1101.

c. Combien de nombres peut-on écrire avec un octet ?

Pour coder la centaine de caractères présents sur un clavier, on les numérote de 0 à 255 et on les code à l'aide d'un octet. La table qui permet de mettre en correspondance un caractère et le nombre entre 0 et 255 s'appelle la **table ASCII**. Récupérez-la sur le site des compléments du manuel.

- **d.** Retrouvez l'écriture décimale du nombre 0100 0001. À quelle lettre correspond-il ?
- **e.** À l'aide de la question **a.**, retrouvez l'écriture en binaire des codes des autres lettres de l'alphabet.
- **f.** Choisissez alors quatre mots de moins de dix lettres, codez-les en binaire puis demandez aux autres groupes de les retrouver. Faites de même avec les mots qui vous auront été donnés.