Se tester avec le QCM!

		R1	R2	R3	R4
1	$(3b - 5)(2b - 3) = \dots$	$3b-5\times 2b-3$	$6b^2 - 19b + 15$	$6b^2 - 19b - 15$	$6b^2 - 15$
2	$(x+1)^2=\dots$	$x^2 + 1$	$x^2 + 2$	$x^2 + 2x + 2$	$x^2 + 2x + 1$
3	$(2a + 3)(2a - 3) = \dots$	$(2a + 1)^2$	$2a^2 - 9$	$4a^2 - 9$	$2a + 3 \times 2a - 3$
4	$(3n-4)^2 = \dots$	$9n^2 + 16 - 24n$	$9n^2 - 16$	$9n^2 - 24n - 16$	$3n^2 - 8$
5	$\left(\frac{2}{3}a+1\right)\left(1-\frac{2}{3}a\right)=\dots$	$\frac{4}{6}a^2-1$	$1 - \frac{4}{9} a^2$	$\frac{4}{9}a^2-1$	$\frac{4}{9}a^2+1$
6	A = 3(x + 1) - (x + 1)(x - 2) est	une somme	une différence	un produit	un quotient
7	L'expression A	est réduite	peut être factorisée	peut être développée	admet x comme facteur commun
8	A =	(x + 1)(5 - x)	(x + 1)(-x + 1)	$-x^2+2x-1$	$-x^2+4x+5$
9	$9a^2 - 4 =$	$(3a - 2)^2$	(3a-2)(3a+2)	5 <i>a</i> ²	(9a - 4)(9a + 4)
10	$B = 25x^2 - 15x + 9$	On ne peut pas factoriser B	$B = (5x - 3)^2$	$B = (5x + 3)^2$	$(5x - 3)^2 + 15x$ est égal à B
11	(4x + 3) + (2x - 6) = 0 donc	4x + 3 = 0 ou $2x - 6 = 0$	6x - 3 = 0	4x + 3 = 0 et $2x - 6 = 0$	<i>x</i> = 0,5
12	5x(x+2)(2x-3) = 0	-2 et $\frac{3}{2}$ sont les solutions de cette équation	0 est une solution de cette équation	x = 0 ou $x + 2 = 0 ou$ $2x - 3 = 0$	Il y a quatre facteurs donc l'équation a quatre solutions

Récréation mathématique

Calcul impossible?

- **a.** Démontre que tout entier impair peut s'écrire comme la différence des carrés de deux entiers naturels consécutifs.
- **b.** Calcule la somme :

$$1 + 3 + 5 + 7 + 9 + \dots + 2005 + 2007 + 2009.$$

Carré de jetons

« Avec des jetons, j'ai réussi à constituer un carré et il m'en reste 12.

J'ai alors essayé de constituer un carré avec un jeton de plus sur chaque côté mais là, il m'en manque 13. »

Combien y a-t-il de jetons ?

Pour aller plus loin

Triplets pythagoriciens

Trois entiers naturels a, b et c forment un triplet pythagoricien lorsque $a^2 + b^2 = c^2$.

a. Trouve tous les triplets pythagoriciens formés de trois entiers naturels consécutifs.

Une aide précieuse : appelle n l'entier du « milieu ».

b. x et y sont deux entiers tels que x > y.

Démontre que les trois entiers $x^2 + y^2$; 2xy et $x^2 - y^2$ forment un triplet pythagoricien.

Indice : commence par trouver le plus grand des trois.

Donne dix triplets pythagoriciens!