Se tester avec le QCM!

		R1	R2	R3	R4
1	C M B	$\frac{AM}{AC} = \frac{BN}{BC} = \frac{MN}{AB}$	$\frac{CM}{CN} = \frac{CA}{CB} = \frac{MN}{AB}$	$\frac{CM}{CA} = \frac{CN}{CB} = \frac{MN}{AB}$	$\frac{CM}{CA} = \frac{CB}{CN} = \frac{MN}{AB}$
2	Dans le cas précédent, CM = 4,5 ; MA = 3 et CN = 3 donc	CB = 2	CB = 5	BN = 2	$CB = \frac{9}{5}$
3	Avec les données précédentes, que peux-tu affirmer ?	Le triangle CMN est une réduction du triangle ABC de coefficient $\frac{3}{5}$	Le triangle CMN est un agrandissement du triangle ABC de coefficient 0,6	Le triangle ABC est un agrandissement du triangle CMN de coefficient $\frac{5}{3}$	Le triangle CMN est une réduction du triangle ABC de coefficient $\frac{5}{3}$
4	P K N N (RM) et (PN) sont sécantes en K et (PR) // (MN) donc	$\frac{KN}{KP} = \frac{KR}{KM} = \frac{NR}{PM}$	$\frac{KN}{KP} = \frac{KM}{KR} = \frac{MN}{PR}$	$\frac{KN}{KP} = \frac{KM}{KR} = \frac{PR}{MN}$	$\frac{RK}{RM} = \frac{PK}{PN} = \frac{PR}{MN}$
5	Avec les données de la question 4, KR = 6; KP = 9 et KM = 15 donc	$KN = \frac{18}{5}$	KN = 22,5	on ne peut pas calculer de longueur	KN = 10
6	B 7 M 22.5 A N 11.5 9 C	(AC) et (BN) sont parallèles	(AC) et (BN) ne sont pas parallèles	On ne peut pas savoir si (AC) et (BN) sont parallèles	$\frac{NB}{AC} = \frac{AM}{AN}$
7	Les diagonales du quadrilatère ABCD se coupent en O. OC = 3 OA et OD = 3 OB donc	ABCD est un trapèze	ABCD est un parallélogramme	$AB = \frac{1}{3} CD$	ABCD est quelconque

Pour aller plus loin

Construire la multiplication à la règle et au compas

Dans tout l'exercice, [Ox) et [Oy) sont deux demi-droites d'origine O et E est le point de [Ox) tel que OE = 1 cm.

- **a.** Construis la figure. Place sur [Ox) les points A et B tels que OA = 2 cm et OB = 3 cm puis sur [Oy), place un point M. La droite parallèle à (EM) passant par A coupe [Oy) en N et la droite parallèle à (BM) passant par N coupe [Ox) en C. Vérifie que OC = 6 cm.
- **b.** Sur une nouvelle figure, place sur [Ox) deux points A et B puis sur [Oy), place un point M. La droite parallèle à (EM) passant par A coupe [Oy) en N et la droite parallèle à (BM) passant par N coupe [Ox) en C. Démontre que $OC = OB \times OA$.
- **c.** Écris une méthode analogue permettant de construire le point C' tel que $OC' = \frac{OA}{OB}$ avec OA < OB.
- **d.** Sur une autre figure, place un point A puis construis un point B tel que OB = OA².
- **e.** Avec TracenPoche, construis une figure. Place un point A. Construis un point C tel que $OC = \sqrt{OA}$.