

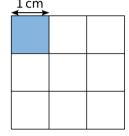
1. Quelques racines carrées simples

- **a.** Trouve tous les nombres dont le carré est 16. Même guestion avec 0,81.
- **b.** Si a et b sont deux nombres qui ont le même carré, que peux-tu dire de a et b ? Justifie.

- c. Donne la mesure du côté du carré ci-contre.
- d. Donne la mesure du côté d'un carré dont l'aire est 0,49 cm².
- **e.** Trace un carré d'aire 36 cm^2 . On appelle d le côté de ce carré en centimètre. Quelle relation existe-t-il entre d et 36 ? Traduis cette égalité par une phrase en français.

2. Un carré d'aire 2

- **a.** Peux-tu tracer un carré dont l'aire est le double de celle du carré bleu ci-contre (tu pourras t'aider du quadrillage si tu le désires) ? Compare ta réponse avec celle de tes camarades.
- **b.** On appelle c le côté de ce carré en centimètre. Quelle relation existe-t-il entre c et 2 ? Traduis cette égalité par une phrase en français.



c. Peux-tu donner une écriture décimale de c?

3. La notation racine carrée

Le nombre positif dont le carré est 36 est noté $\sqrt{36}\,\,$ et se lit « racine carrée de 36 ».

On a vu dans les questions précédentes que $\sqrt{36} = 6$.

Le nombre positif dont le carré est 2 est noté $\sqrt{2}$ et se lit « racine carrée de 2 ».

- a. Existe-t-il un nombre dont le carré soit négatif ? Justifie.
- **b.** À l'aide de la calculatrice, donne une valeur approchée au dix-millième de $\sqrt{2}$.
- **c.** Recopie et complète le tableau suivant, en utilisant ta calculatrice. Les valeurs seront arrondies au millième.

а	1	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\sqrt{a}															

- d. Que remarques-tu?
- **e.** Certains nombres entiers ont une racine carrée entière. On dit que ces nombres sont des carrés parfaits. Cite tous les carrés parfaits compris entre 0 et 256.

4. Premiers calculs

a. Parmi les nombres suivants, quels sont ceux qui sont égaux à 13 ?

$$\sqrt{13^2}$$
 : $\sqrt{13}$: $(\sqrt{13})^2$: $\sqrt{(-13)^2}$: 13^2

b. Quelles sont les valeurs exactes de $E = \sqrt{7^2}$ et $F = \sqrt{(\pi - 5)^2}$?

Activité 2: Approximation d'une racine carrée

1. Avec la calculatrice

- **a.** On veut déterminer une valeur approchée de $\sqrt{33}$. Sans calculatrice, donne un encadrement à l'unité de ce nombre.
- **b.** Après avoir recopié et complété le tableau ci-dessous, donne un encadrement de $\sqrt{33}$ au dixième.

N	5	5,1	5,2	5,3	5,4	5,5	5,6	5,7	5,8	5,9	6
N^2											

2. Avec un tableur

a. Construis la feuille de calcul suivante.

	Α	B	C.	D	F	F	G	Н	1	- 1	K	1
1	Pas											
2	N	5										6
3	N^2											

- b. Quelle formule dois-tu écrire dans la cellule B1 pour calculer le pas qui permette d'aller de B2 à L2 en 10 étapes ? Complète la cellule C2 pour augmenter B2 du pas calculé en B1 puis recopie la formule jusqu'en K2 (pour recopier la formule sans changer B1, écris \$B\$1 au lieu de B1).
- **c.** Complète la cellule B3 pour obtenir le carré du nombre en B2 puis recopie la formule jusqu'à L3.
- **d.** Observe le tableau et donne un encadrement de $\sqrt{33}$ au dixième près.
- **e.** Remplace le contenu de B2 et de L2 par les bornes de ton encadrement. Ouel encadrement de $\sqrt{33}$ obtiens-tu ? Quelle est sa précision ?
- **f.** Recommence la question précédente avec le nouvel encadrement jusqu'à obtenir une précision de 10-6. (Tu peux changer le format d'affichage des nombres.)
- **g.** Utilise ta feuille de calcul pour obtenir une approximation de $\sqrt{125}$ à 10-4 près.

Activité 3 : Somme de deux racines carrées

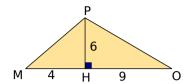
Dans toute cette activité, on prendra comme unité : 1 u = 5 cm.

- **a.** Construis un carré OUBA de côté 1 u. Trace le cercle de centre O et de rayon OB. Il coupe la demi-droite [OU) en C. Calcule OC en utilisant l'unité de mesure choisie.
- **b.** Trace la droite perpendiculaire à (OU) passant par C. Elle coupe (AB) en C'. Le cercle de centre O, de rayon OC' coupe [OU) en D. Calcule OD dans l'unité de mesure choisie.
- **c.** En t'inspirant des questions précédentes, construis le point F de la demi-droite [OU) tel que $OF = \sqrt{5} \ u$.
- d. Place le point G sur la demi-droite [OU) tel que OG = OC + OD. Quelle est la mesure exacte de OG ? Compare OF et OG. Que peux-tu en déduire ?

Activité 4 : Produit de deux racines carrées

1. Conjecture

- a. Quelle est l'aire du triangle POM ?
- **b.** Démontre que POM est un triangle rectangle.
- c. Calcule l'aire de ce triangle d'une deuxième manière.



- **d.** En t'aidant des résultats trouvés dans les questions **a.** et **c.**, écris $\sqrt{117} \times \sqrt{52}$ sous la forme \sqrt{c} où c est un nombre entier. Déduis-en un moyen de calculer $\sqrt{117} \times \sqrt{52}$ d'une autre manière.
- e. Recopie et complète le tableau suivant pour confirmer ta conjecture.

а	b	$\sqrt{a \times b}$	$\sqrt{a} \times \sqrt{b}$
4	16		
5	2		
100	64		
- 2	- 3		

2. Démonstration

On va démontrer que $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$ pour tous nombres a et b **positifs**. L'idée de la démonstration est d'élever au carré chacun des termes de l'égalité.

- **a.** Pourquoi a et b doivent-ils être positifs ?
- **b.** Calcule $\left(\sqrt{a \times b}\right)^2$ et $\left(\sqrt{a} \times \sqrt{b}\right)^2$ puis conclus.

3. Exemples

a. Sans calculatrice, calcule les nombres suivants :

$$A = \sqrt{5} \times \sqrt{45}$$
; $B = \sqrt{5} \times \sqrt{2} \times \sqrt{10}$

- **b.** Calcule de même $D = \sqrt{2} \times \sqrt{18}$ et $E = \sqrt{27} \times \sqrt{6} \times \sqrt{8}$.
- c. Développe et réduis les expressions suivantes :

$$F = 3\sqrt{2} \left(7\sqrt{2} - \sqrt{5}\right)$$
; $G = (\sqrt{7} + 2)(15 - \sqrt{3})$

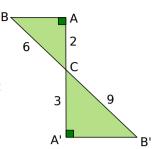
4. Application aux simplifications de racines

- **a.** Décompose 12 sous la forme d'un produit de deux entiers. Combien y a-t-il de possibilités ? Laquelle permet de simplifier $\sqrt{12}$?
- **b.** Même question avec $\sqrt{45}$.
- c. Quelle méthode peux-tu utiliser pour simplifier une racine carrée ?
- **d.** Écris les nombres suivants sous la forme $a\sqrt{b}$ où a et b sont des entiers positifs avec b le plus petit possible : $\sqrt{72}$; $\sqrt{75}$; $\sqrt{32}$.

Activité 5 : Quotient de deux racines carrées

1. Conjecture

- **a.** Calcule la valeur de $\frac{AB}{A'B'}$.
- **b.** En utilisant la définition d'une racine carrée, écris le résultat précédent sous la forme $\sqrt{\frac{a}{b}}$ où a et b sont des entiers positifs avec $b \neq 0$.



- c. Calcule AB puis A'B'.
- **d.** Compare les deux écritures de $\frac{AB}{A'B'}$ et trouve un moyen pour simplifier $\frac{\sqrt{32}}{\sqrt{72}}$.
- **e.** Recopie et complète le tableau suivant et déduis-en une méthode de simplification de quotients de racines carrées.

а	b	$\sqrt{\frac{a}{b}}$	$\frac{\sqrt{a}}{\sqrt{b}}$
25	16		
100	64		
49	9		
- 2	- 4		

2. Démonstration

On va démontrer que, si a est positif et b est strictement positif alors $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

- **a.** Pourquoi *a* doit-il être positif et *b* strictement positif ?
- **b.** Démontre l'égalité.

Activité 6 : Équation du type $x^2 = a$

- a. Quels sont les nombres dont le carré est 49 ? 225 ? 7 ?
- **b.** Existe-t-il des nombres dont le carré est 9 ? 36 ? 7 ? Justifie.
- c. Selon toi, combien existe-t-il de solution(s) pour les équations suivantes ?

•
$$x^2 = 16$$

•
$$x^2 = 13$$

•
$$x^2 = -4$$

- **d.** Factorise $x^2 10$ puis résous l'équation $x^2 = 10$.
- **e.** Combien de solutions a l'équation $(x + 2)^2 = 5$?
- **f.** Résous l'équation $(x + 2)^2 = 5$.

Activité 7: Le point sur les nombres

1. Les ensembles de nombres

Voici une liste de nombres.

$$\frac{-457}{23} \; ; \; 4\sqrt{2} \; ; \; 854 \; ; \; 0,000 \; 08 \times 10^7 \; ; \; \sqrt{49} \; ; \; \pi \; ; \; \frac{174}{58} \; ; \; -0,000 \; 415 \; 7 \; ; \; -\sqrt{\frac{4}{9}} \; ; \; \frac{58}{4} \; ; \; 10^{-3}$$

- a. Dans cette liste, quels sont les nombres entiers ? Quels sont les nombres décimaux ?
- b. Y a-t-il des nombres qui ne peuvent pas s'écrire sous forme décimale ?
- c. Y a-t-il des nombres qui peuvent s'écrire sous forme fractionnaire ?
- d. Y a-t-il des nombres qui ne rentrent dans aucune des catégories précédentes ?

2. Rationnel ou pas?

a. $\sqrt{2}$ n'est ni un nombre entier ni un nombre décimal. Est-ce un nombre rationnel ?

Dans cette partie, on suppose que $\sqrt{2}$ est un un nombre rationnel et qu'il peut s'écrire sous la forme d'un quotient de deux entiers relatifs p et q: $\sqrt{2} = \frac{p}{q}$ où $\frac{p}{q}$ est un quotient irréductible. Démontre que $2q^2 = p^2$.

b. Dans cette question, on va étudier la divisibilité de p^2 et de $2q^2$ par 2 et par 5. Pour cela, recopie et complète les tableaux ci-dessous.

Si le chiffre des unités de p est	0	1	2	3	4	5	6	7	8	9
alors le chiffre des unités de p^2 est										

Si le chiffre des unités de q est	0	1	2	3	4	5	6	7	8	9
alors le chiffre des unités de q^2 est										
et le chiffre des unités de $2q^2$ est	·									

- **c.** En observant les tableaux précédents, quel(s) est (sont), selon toi, le (les) chiffre(s) des unités possible(s) de p et q quand $2q^2 = p^2$?
- **d.** La fraction $\frac{p}{q}$ est-elle irréductible ? Qu'en déduis-tu pour le nombre $\sqrt{2}$?

3. Une autre démonstration

- **a.** On suppose que $\sqrt{2}$ est un quotient de deux entiers relatifs p et q donc il peut s'écrire sous la forme $\sqrt{2}=\frac{p}{q}$ où $\frac{p}{q}$ est un quotient irréductible. Démontre que $2q^2=p^2$ et déduis-en que p^2 est pair.
- **b.** En utilisant la propriété énoncée dans l'exercice 7 des approfondissements du chapitre N1, démontre que p est pair.
- **c.** p étant pair, p peut s'écrire sous la forme 2p'. Calcule alors q^2 . Que peux-tu en déduire pour la parité de q ? Que peux-tu dire de la fraction $\frac{p}{q}$?