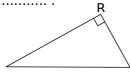


G1 - Triangle rectangle

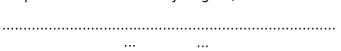
Série 2 - Théorème de Pythagore

Le cours avec les aides animées

- **Q1.** Comment reconnais-tu l'hypoténuse parmi les côtés d'un triangle rectangle ?
- **Q2.** Quelles sont les données à connaître pour pouvoir appliquer le théorème de Pythagore et calculer des longueurs ?
- **Q3.** Si, dans un triangle, le carré de la longueur du plus grand côté n'est pas égal à la somme des carrés des longueurs des deux autres côtés, que permet d'affirmer le théorème de Pythagore ?


Les exercices d'application

1 Relation de Pythagore


- **a.** Le triangle DEF étant rectangle en D, son hypoténuse est [......]. Ainsi d'après le théorème de, on a :² =² +².
- **b.** Le triangle ABC étant rectangle en A, son hypoténuse est [......]. Ainsi d'après le théorème de on a :² =² +².
- **c.** Le triangle étant rectangle en son hypoténuse est [......]. Ainsi d'après le théorème de, on a : $RS^2 = RT^2 + ST^2$.
- e. Le triangle LMN est rectangle endonc d'après le,
- **f.** Le triangle est rectangle endonc d'après le,

on a : $LM^2 = +$

g. Le triangle FGH est rectangle en H donc d'après le théorème de Pythagore, on a :

		_		
Calcul	de la	longueur	'de l'	hypoténuse

2

ERL est ι	ın tr	iangle recta	angle	en R
tel que E	R =	9 cm et RL	= 12	cm.
Calcule	la	longueur	de	son
hypoténi	use.			

Le triangle étant rectangle en, son hypoténuse est [......]. Ainsi d'après le théorème de, on a : $EL^2 = \dots ^2 + \dots ^2$. Remplace par les valeurs : $EL^2 = \dots ^2 + \dots ^2$.

De plus $9^2 = ... \times ... =$ et $12^2 = \times =$

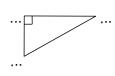
On obtient alors : $EL^2 = \dots + \dots$.

Soit $EL^2 = \dots$.

EL représente la longueur de [EL]. On cherche donc le nombre positif qui multiplié par lui-même vaut; ce nombre se note $\sqrt{......}$.

Finalement : $EL = \sqrt{\dots}$.

Utilise la touche $\sqrt{}$ de ta calculatrice pour calculer EL.


Ouel résultat affiche ta calculatrice ?

Quel calcul peux-tu faire pour vérifier l'exactitude de cette valeur ?

 $\underline{\mathsf{Conclusion}} : \mathsf{EL} = \ldots \mathsf{cm}.$

3 Calcul de la longueur de l'hypoténuse (bis)

LOI est un triangle rectangle en O tel que LO = 16 cm et OI = 12 cm. Calcule la longueur de son hypoténuse.

Le triangle LOI est rectangle en, donc d'après, on a : = +

Remplace par les longueurs connues.

...... = +

Utilise la touche x^2 de ta calculatrice.

...... = +

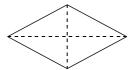
LI est un nombre positif donc LI = $\sqrt{\dots}$.

Soit LI = cm.

G1 - Triangle rectangle

Série 2 - Théorème de Pythagore

4 Calcul d'un côté de l'	angle droit	6 Valeur approchée, valeur arrondie			
ARC est un triangle recta R tel que AC = 52 n RC = 48 mm. Calcule la longueur d [AR].	nm et		agore a permis à Alice de $B=\sqrt{15}$ (en cm). Écris la culatrice pour $\sqrt{15}$.		
est un triang	le rectangle en	Quel calcul te permet de	vérifier que cette valeur		
	e de,	n'est pas la valeur exacte	e de $\sqrt{15}$?		
on a : $AC^2 = \dots^2 + \dots$					
Deux façons de calculer A		Donne les valeurs approc	hées au dixième près de		
	b. On exprime d'abord	AB : AB ≈ cm ou	ı AB ≈ cm.		
suite par les mesures que l'on connaît :	ce que l'on cherche en fonction des carrés des deux autres côtés :	Donne la valeur arrondie	de AB au mm :		
$^2 = AR^2 +^2$		ΑΒ ≈	cm.		
On calcule ensuite les carrés :	$AR^2 = \dots^2 - \dots^2$ On remplace ensuite par	b. Sachant que CD = arrondie au centième : C	$\sqrt{8}$ m, donne sa valeur D $pprox$ m.		
= AR ² +	les mesures que l'on connaît :	c. Sachant gue EF = $\sqrt{2}$	8,86 m, donne sa valeur		
On calcule AR ² :	$AR^2 = \dots^2 - \dots^2$	arrondie au centimètre :			
AR ² = –	AR ² =	7 Calcul d'un côté d'un triangle rectangle			
Dans les deux cas, on tro	uve AR ² =	Le triangle PIE rectangle et IE = 4 cm.	en I est tel que IP = 7 cm		
AR est un nombre positif	donc AR = $\sqrt{\dots}$.	a. Complète le schéma c	i-contre.		
Soit AR = mm.		b. Calcule la valeur exac	te de PE.		
5 Calcul d'un côté de l'a	angle droit (bis)				
KXZ est un triangle rect					
en K tel que KX = 68 m					
ZX = 68,9 mm. Calcule la longueur du	côté				
[KZ].			Soit PE = $\sqrt{\dots}$ cm.		
est un trianç	gle rectangle en	c. Donne la valeur de PE, arrondie au dixième de			
donc d'après	,	centimètre : PE ≈			
on a: $^2 = \dots ^2 + \dots$	2	8 Échelle			
Dans cet exercice, on che	erche la longueur	À quelle hauteur se trouve le sommet d'une			
Choisis la méthode de ton choix pour calculer cette longueur (voir l' exercice précédent) :		échelle de 5,50 m de lo	ng, en appui sur un mur placée à 1,40 m du pied		
=		<u>Schéma</u> :			
=					
=					
		Le triangle			
=					
est un	$\dots = \sqrt{\dots}.$				
Soit = mm	,				



G1 - Triangle rectangle

Série 2 - Théorème de Pythagore

9	Périmètre	d'un	losange

ABCD est un losange de centre O tel que AC = 6 cm et BD = 8 cm.

a.	Place	les	sommet	s et	le	point	O	sur	le	scl	าén	na
----	-------	-----	--------	------	----	-------	---	-----	----	-----	-----	----

b. Calcule AB puis le perimetre de ce losarige.
ABCDEFGH est un cube d'arête 10 cm. On veut calculer la longueur de la grande diagonale [EC]. On admettra que le triangle AEC est rectangle en A. a. Calcule la longueur AC arrondie au mm.
Dans le triangle
Dans le triangle
b. Déduis-en la valeur exacte de EC ² .
Dans le triangle
Duris ic triangic
c. Donne la valeur arrondie au millimètre de la

diagonale [EC]: $EC \approx \dots$

TO = 77 mm; OC = 35 mm	Montrer qu'un triangle n'e	est pas rectangie

a. Si TOC est red	ctangle, son hypoténuse ne peut
être que le côté	[] car c'est le côté le plus
D	onc si le triangle TOC est
rectangle, il ne po	ourra l'être qu'en
b. Prouve que rectangle.	TOC n'est pas un triangle
Dans le triangle T	OC, [CT] est le côté le plus
On calcule séparé	ement CT ² et ² + ² .
CT ² = ²	² +² =² +²
CT ² =	2 + = +
	² +² =

Si le triangle TOC était rectangle, d'après le théorème de Pythagore, on aurait :

$\dots^2 = \dots^2 + \dots^2.$
Or ici on constate que ² \neq ² + ² .
Donc d'après
le triangle TOC

12 Triangle non rectangle

triangle MNP n'est pas rectangle :

Soit MNP un triangle tel que MN = 9.6 cm; MP = 4 cm et NP = 10,3 cm.En t'aidant de l'exercice précédent, montre que le

Dans le triangle, [....] est le côté le plus

On calcule séparé	ément² et² +².
2 =2	² + ² = ² + ²
² =²	2 + +
	² +² =

Si le triangle était rectangle, d'après le théorème de Pythagore, on aurait :

2 + 2

$\dots^2 = \dots^2 + \dots^2.$
On constate que \neq 2 + 2 .
Donc d'après,
le triangle